Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 26(29): 4199-208, 2007 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-17224908

RESUMO

The ubiquitin (Ub)-proteasome system (UPS) promotes the proteasomal degradation of target proteins by decorating them with Ub labels. Emerging evidence indicates a role of UPS in regulating gene transcription. In this study, we provided evidence for the involvement of UPS in the transcriptional activation function of tumor suppressor p53. We showed that both ubiquitylation and proteasomal functions are required for efficient transcription mediated by p53. Disruption of transcription by actinomycin D, 5,6-dichloro-1-beta-D-ribofuranosyl-benzimadazole or alpha-amanitin leads to accumulation of cellular p53 protein. Proteasome inhibition by MG132 increases the occupancy of p53 protein at p53-responsive p21(waf1) promoter. In addition, the Sug-1 component of 19S proteasome physically interacts with p53 in vitro and in vivo. Moreover, in response to ultraviolet-induced DNA damage, both the 19S proteasomal components, Sug1 and S1, are recruited to p21(waf1) promoter region in a kinetic pattern similar to that of p53. These results suggested that UPS positively regulates p53-mediated transcription at p21(waf1) promoter.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/fisiologia , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/fisiologia , Enzimas Ativadoras de Ubiquitina/fisiologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Células HeLa , Humanos , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/metabolismo , Síndrome de Li-Fraumeni/patologia , Camundongos
2.
Biochemistry ; 39(43): 13136-43, 2000 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-11052665

RESUMO

The amino acid binding domains of the tryptophanyl (TrpRS)- and tyrosyl-tRNA synthetases (TyrRS) of Bacillus stearothermophilus are highly homologous. These similarities suggest that conserved residues in TrpRS may be responsible for both determining tryptophan recognition and discrimination against tyrosine. This was investigated by the systematic mutation of TrpRS residues based upon the identity of homologous positions in TyrRS. Of the four residues which interact directly with the aromatic side chain of tryptophan (Phe5, Met129, Asp132, and Val141) replacements of Asp132 led to significant changes in the catalytic efficiency of Trp aminoacylation (200-1250-fold reduction in k(cat)/K(M)) and substitution of Val141 by the larger Glu side chain reduced k(cat)/K(M) by 300-fold. Mutation of Pro127, which determines the position of active-site residues, did not significantly effect Trp binding. Of the mutants tested, D132N TrpRS also showed a significant reduction in discrimination against Tyr, with Tyr acting as a competitive inhibitor but not a substrate. The analogous residue in B. stearothermophilusTyrRS (Asp176) has also been implicated as a determinant of amino acid specificity in earlier studies [de Prat Gay, G., Duckworth, H. W., and Fersht, A. R. (1993) FEBS Lett. 318, 167-171]. This striking similarity in the function of a highly conserved residue found in both TrpRS and TyrRS provides mechanistic support for a common origin of the two enzymes.


Assuntos
Evolução Molecular , Triptofano-tRNA Ligase/metabolismo , Triptofano/metabolismo , Acilação , Animais , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Bovinos , Análise Mutacional de DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Difosfatos/metabolismo , Geobacillus stearothermophilus/genética , Humanos , Cinética , Camundongos , Mutagênese Sítio-Dirigida , Ligação Proteica/genética , RNA de Transferência de Triptofano/genética , Coelhos , Homologia de Sequência de Aminoácidos , Triptofano/genética , Triptofano-tRNA Ligase/genética , Tirosina/metabolismo
3.
Nucleic Acids Res ; 27(18): 3631-7, 1999 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-10471730

RESUMO

Sequence-specific interactions between aminoacyl-tRNA synthetases and their cognate tRNAs ensure both accurate RNA recognition and the efficient catalysis of aminoacylation. The effects of tRNA(Trp)variants on the aminoacylation reaction catalyzed by wild-type Escherichia coli tryptophanyl-tRNA synthe-tase (TrpRS) have now been investigated by stopped-flow fluorimetry, which allowed a pre-steady-state analysis to be undertaken. This showed that tRNA(Trp)identity has some effect on the ability of tRNA to bind the reaction intermediate TrpRS-tryptophanyl-adenylate, but predominantly affects the rate at which trypto-phan is transferred from TrpRS-tryptophanyl adenylate to tRNA. Use of the binding ( K (tRNA)) and rate constants ( k (4)) to determine the energetic levels of the various species in the aminoacylation reaction showed a difference of approximately 2 kcal mol(-1)in the barrier to transition state formation compared to wild-type for both tRNA(Trp)A-->C73 and. These results directly show that tRNA identity contributes to the degree of complementarity to the transition state for tRNA charging in the active site of an aminoacyl-tRNA synthetase:aminoacyl-adenylate:tRNA complex.


Assuntos
Escherichia coli/enzimologia , Aminoacil-RNA de Transferência/biossíntese , RNA de Transferência de Triptofano/genética , RNA de Transferência de Triptofano/metabolismo , Triptofano-tRNA Ligase/metabolismo , Monofosfato de Adenosina/metabolismo , Sequência de Bases , Sítios de Ligação , Catálise , Escherichia coli/genética , Fluorescência , Cinética , Mutação , Conformação de Ácido Nucleico , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência de Glutamina/química , RNA de Transferência de Glutamina/genética , RNA de Transferência de Glutamina/metabolismo , RNA de Transferência de Triptofano/química , Especificidade por Substrato , Termodinâmica , Triptofano/metabolismo
4.
FEBS Lett ; 439(3): 235-40, 1998 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-9845329

RESUMO

Like all other eukaryal cytosolic seryl-tRNA synthetase (SerRS) enzymes, Saccharomyces cerevisiae SerRS contains a C-terminal extension not found in the enzymes of eubacterial and archaeal origin. Overexpression of C-terminally truncated SerRS lacking the 20-amino acid appended domain (SerRSC20) is toxic to S. cerevisiae possibly because of altered substrate recognition. Compared to wild-type SerRS the truncated enzyme displays impaired tRNA-dependent serine recognition and is less stable. This suggests that the C-terminal peptide is important for the formation or maintenance of the enzyme structure optimal for substrate binding and catalysis.


Assuntos
DNA Fúngico/metabolismo , RNA de Transferência de Serina/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Serina-tRNA Ligase/farmacologia , Sequência de Aminoácidos , Estabilidade Enzimática , Cinética , Dados de Sequência Molecular , Conformação Proteica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Serina-tRNA Ligase/genética , Serina-tRNA Ligase/metabolismo , Especificidade por Substrato
5.
Curr Genet ; 32(3): 190-6, 1997 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9339343

RESUMO

The majority of secreted acid phosphatase in Saccharomyces cerevisiae is encoded by the PH05 gene. The secretion level of this acid phosphatase is directly determined by its level of glycosylation. Consequently, PHO5-11-encoded acid phosphatase which lacks 11 of 12 glycosylation sites is only poorly secreted. We have isolated and characterized both UV- and EMS-induced variants, which are partly able to restore the secretion of acid phosphatase. Our data indicate that the improved secretion is caused by mitotic intrachromosomal recombination between the PHO5-11 allele and the homologous tandemly repeated PHO3 sequences, resulting in the restoration of glycosylation sites in PHO5-11. Two different recombination mechanisms, unequal sister-chromatid exchange and sister-chromatid gene conversion, are responsible for these alterations of the PHO5-11 locus. Thus, recombination between mutant and wild-type sequences are able to restore the ability of mutant yeast cells to secrete acid phosphatase.


Assuntos
Fosfatase Ácida/metabolismo , Genes Fúngicos , Proteínas de Transporte de Fosfato , Recombinação Genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sequência de Bases , Proteínas de Transporte/genética , Variação Genética , Glicosilação , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase
6.
Mol Gen Genet ; 255(6): 561-9, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9323359

RESUMO

The ILV1 gene of Saccharomyces cerevisiae encodes the anabolic threonine deaminase, which catalyzes the first committed step in isoleucine biosynthesis. Strains devoid of a functional Ilv1p have a requirement for isoleucine. Threonine can also be deaminated by a second serine/threonine deaminase encoded by the CHA1 gene. CHA1 is regulated by transcriptional induction by serine and threonine, and enables yeast to utilize the hydroxyamino acids as sole nitrogen source. Phenotypic suppression of ilv1 can occur by inducer-mediated transcriptional activation of the CHA1 gene. To identify mutations in putative trnas-acting factors regulating CHA1 expression, we have isolated and characterized three extragenic suppressors of ilv1. A dominant mutation, SIL4 (suppressor of ilv1), is allelic to HOM3. It increases the size of the threonine pool, by 15- to 20-fold, which is sufficient to induce CHA1 transcription, thereby creating a metabolic bypass of ilv1. A second dominant mutation, SIL3, and a recessive mutation, sil2, both suppress ilv1 by causing inducer-independent, constitutive transcription of CHA1. Importantly, sil2 and SIL3 increase the expression of a CHA1p-lacZ translational gene fusion, demonstrating that they exert their action through the CHA1 promoter. Genetic analysis showed that both SIL3 and sil2 are alleles of CHA4, a positive regulator of CHA1, i.e., they convert Cha4p to a constitutive activator.


Assuntos
Genes Fúngicos , Saccharomyces cerevisiae/genética , Mapeamento Cromossômico , Genes Dominantes , Genes Recessivos , Isoleucina/biossíntese , L-Serina Desidratase/genética , Mutação , Saccharomyces cerevisiae/metabolismo , Supressão Genética , Treonina/biossíntese , Treonina Desidratase/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA