Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 677(Pt A): 729-738, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39121657

RESUMO

The development of a cost-effective and efficient bifunctional electrode for overall water splitting holds significant importance in accelerating the sustainable advancement of hydrogen energy. The present study involved a bifunctional catalytic electrode was prepared by loading NiCo-modified 1T/2H MoS2 onto carbonized wood (NiCo-MoS2-CW) using the hydrothermal and electrodeposition techniques. The XPS analysis revealed that NiCo-modified MoS2 exhibited a weak electron characteristic, which facilitated the ionization of H2O and significantly enhanced the Volmer step. The XPS analysis unveiled that NiCo-modified MoS2 displayed a weak electron characteristic, thereby promoting the ionization of H2O and substantially augmenting the Volmer step. The electrocatalytic performance of the NiCo-MoS2-CW in 1.0 M KOH is remarkably impressive, exhibiting minimal overpotentials of only 64 mV (10 mA cm-2) and 216 mV (50 mA cm-2) for the hydrogen evolution reaction and oxygen evolution reaction, respectively. The NiCo-MoS2-CW || NiCo-MoS2-CW electrolytic cell can achieve a cell voltage of only 1.69 V to achieve a current density of 50 mA cm-2. Overall, this study proposes a potential approach to improve the catalytic efficiency of overall water splitting by modulating the interfacial electronic properties of MoS2.

2.
Small ; 20(5): e2305948, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759414

RESUMO

The large-scale commercialization of the hydrogen evolution reaction (HER) necessitates the development of cost-effective and highly efficient electrocatalysts. Although transition metal sulfides, such as MoS2 and Ni3 S2 , hold great potential in the field of HER, their catalytic performance has been unsatisfactory due to incomplete exposure of active sites and poor electrical conductivity. In this work, via a simple hydrothermal strategy, amorphous MoS2 nanoshells in the form of urchin-like MoS2 -Ni3 S2 core-shell heterogeneous structure is realized and in situ loaded on nickel foam (A-MoS2 -Ni3 S2 -NF). In particular, XPS analysis results show that the coupling of amorphous MoS2 and Ni3 S2 makes the electrode surface exhibit electron-abundant property, which will have a positive impact on HER catalytic activity. In addition, the fully exposed active site of amorphous MoS2 is another crucial factor contributing to its high catalytic performance of A-MoS2 -Ni3 S2 -NF electrode. In particular, at a current density of 10 mA cm⁻2 , the overpotential of electrode is 95 mV (1.0 m KOH) and 145 mV (0.5 m H2 SO4 ). This work highlights the importance of amorphous MoS2 and MoS2 -Ni3 S2 of sea-urchin core-shell structure in optimizing HER performance, which provides an important reference for HER research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA