Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 10(5): uhad047, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37213683

RESUMO

Fallopia multiflora (Thunb.) Harald, a vine belonging to the Polygonaceae family, is used in traditional medicine. The stilbenes contained in it have significant pharmacological activities in anti-oxidation and anti-aging. This study describes the assembly of the F. multiflora genome and presents its chromosome-level genome sequence containing 1.46 gigabases of data (with a contig N50 of 1.97 megabases), 1.44 gigabases of which was assigned to 11 pseudochromosomes. Comparative genomics confirmed that F. multiflora shared a whole-genome duplication event with Tartary buckwheat and then underwent different transposon evolution after separation. Combining genomics, transcriptomics, and metabolomics data to map a network of associated genes and metabolites, we identified two FmRS genes responsible for the catalysis of one molecule of p-coumaroyl-CoA and three molecules of malonyl-CoA to resveratrol in F. multiflora. These findings not only serve as the basis for revealing the stilbene biosynthetic pathway but will also contribute to the development of tools for increasing the production of bioactive stilbenes through molecular breeding in plants or metabolic engineering in microbes. Moreover, the reference genome of F. multiflora is a useful addition to the genomes of the Polygonaceae family.

2.
Front Plant Sci ; 12: 713490, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621284

RESUMO

Poria cocos (Schw.) Wolf is a saprophytic fungus that grows around the roots of old, dead pine trees. Fushen, derived from the sclerotium of P. cocos but also containing a young host pine root, has been widely used as a medicine and food in China, Japan, Korea, Southeast Asian countries, and some European countries. However, the compound variations at the different growth periods and in the different parts of Fushen have not previously been investigated. In this study, an untargeted metabolomics approach based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) and targeted quantitative analysis was utilized to characterize the temporal and spatial variations in the accumulation of specialized metabolites in Fushen. There were 119 specialized metabolites tentatively identified using the UPLC-Q/TOF-MS. The nine growth periods of Fushen were divided into four groups using partial least squares discrimination analysis (PLS-DA). Four different parts of the Fushen [fulingpi (FP), the outside of baifuling (BO), the inside of baifuling (BI), and fushenmu (FM)] were clearly discriminated using a PLS-DA and orthogonal partial least squares discrimination analysis (OPLS-DA). Markers for the different growth periods and parts of Fushen were also screened. In addition, the quantitative method was successfully applied to simultaneously determine 13 major triterpenoid acids in the nine growth periods and four parts. The quantitative results indicated that the samples in January, March, and April, i.e., the late growth period, had the highest content levels for the 13 triterpenoid acids. The pachymic acid, dehydropachymic acid, and dehydrotumulosic acid contents in the FM were higher than those in other three parts in March, whereas the poricoic acid B, poricoic acid A, polyporenic acid C, dehydrotratrametenolic acid, dehydroeburicoic acid, and eburicoic acid in FP were higher beginning in October. These findings reveal characteristics in temporal and spatial distribution of specialized metabolites in Fushen and provide guidance for the identification of harvesting times and for further quality evaluations.

3.
J Pharm Biomed Anal ; 200: 114070, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33878622

RESUMO

Heshouwu, derived from root tubers of Fallopia multiflora (Thunb.) Harald., is a well-known herb used for millennia in traditional Chinese medicine. However, different forms of root tubers of Heshouwu have occurred in current Chinese herbal market and used in clinic, although it is still unknown whether their quality is consistent. In the present study, a mass spectrometry imaging and laser microdissection combined with UPLC-Q/TOF-MS were therefore used for the metabolite profiling on the whole and different parts of root tubers of F. multiflora and F. multiflora var. angulata. Our results suggested that the character of "woody heart" root tubers of F. multiflora was similar to that of F. multiflora var. angulata, but the latter had more phloem fibers and larger diameter vessel in the normal vascular bundle. Moreover, 140 compounds including stilbenes, anthraquinones, phenolic acids, naphthalenes, and other compounds were identified or putatively characterized from F. multiflora and F. multiflora var. angulata. Both unsupervised principal component analysis (PCA) and supervised Orthogonal Partial Least Squares Discrimination Analysis (OPLS-DA) multivariate statistics allowed discriminating F. multiflora and F. multiflora var. angulata. And a total of 32 potential markers were identified. The tissue-specific study indicated that the compounds in the phelloderm of F. multiflora and F. multiflora var. angulata were the most abundant. This is the first study on metabolite profiling and comparison of root tubers between F. multiflora and F. multiflora var. angulata, which would provide reasonable basis for further quality evaluation and safe medication of F. multiflora.


Assuntos
Medicamentos de Ervas Chinesas , Fallopia multiflora , Cromatografia Líquida de Alta Pressão , Lasers , Espectrometria de Massas , Microdissecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA