Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 30(24): 5649-57, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20937772

RESUMO

Ras proteins associate with cellular membranes as a consequence of a series of posttranslational modifications of a C-terminal CAAX sequence that include prenylation and are thought to be required for biological activity. In Drosophila melanogaster, Ras1 is required for eye development. We found that Drosophila Ras1 is inefficiently prenylated as a consequence of a lysine in the A(1) position of its CAAX sequence such that a significant pool remains soluble in the cytosol. We used mosaic analysis with a repressible cell marker (MARCM) to assess if various Ras1 transgenes could restore photoreceptor fate to eye disc cells that are null for Ras1. Surprisingly, we found that whereas Ras1 with an enhanced efficiency of membrane targeting could not rescue the Ras1 null phenotype, Ras1 that was not at all membrane targeted by virtue of a mutation of the CAAX cysteine was able to fully rescue eye development. In addition, constitutively active Ras1(12V,C186S) not targeted to membranes produced a hypermorphic phenotype and stimulated mitogen-activated protein kinase (MAPK) signaling in S2 cells. We conclude that the membrane association of Drosophila Ras1 is not required for eye development.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células Fotorreceptoras de Invertebrados/fisiologia , Proteínas ras/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Biomarcadores/metabolismo , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Mutação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Transgenes , Proteínas ras/genética
2.
Mol Biol Cell ; 21(19): 3487-96, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20719962

RESUMO

Sprouty (Spry) proteins are negative regulators of receptor tyrosine kinase signaling; however, their exact mechanism of action remains incompletely understood. We identified phosphatidylinositol-specific phospholipase C (PLC)-γ as a partner of the Spry1 and Spry2 proteins. Spry-PLCγ interaction was dependent on the Src homology 2 domain of PLCγ and a conserved N-terminal tyrosine residue in Spry1 and Spry2. Overexpression of Spry1 and Spry2 was associated with decreased PLCγ phosphorylation and decreased PLCγ activity as measured by production of inositol (1,4,5)-triphosphate (IP(3)) and diacylglycerol, whereas cells deficient for Spry1 or Spry1, -2, and -4 showed increased production of IP(3) at baseline and further increased in response to growth factor signals. Overexpression of Spry 1 or Spry2 or small-interfering RNA-mediated knockdown of PLCγ1 or PLCγ2 abrogated the activity of a calcium-dependent reporter gene, suggesting that Spry inhibited calcium-mediated signaling downstream of PLCγ. Furthermore, Spry overexpression in T-cells, which are highly dependent on PLCγ activity and calcium signaling, blocked T-cell receptor-mediated calcium release. Accordingly, cultured T-cells from Spry1 gene knockout mice showed increased proliferation in response to T-cell receptor stimulation. These data highlight an important action of Spry, which may allow these proteins to influence signaling through multiple receptors.


Assuntos
Proteínas de Membrana/metabolismo , Fosfolipase C gama/metabolismo , Fosfoproteínas/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Biomarcadores/metabolismo , Cálcio/metabolismo , Diglicerídeos/metabolismo , Ativação Enzimática , Imunoprecipitação , Inositol 1,4,5-Trifosfato/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Espaço Intracelular/metabolismo , Lectinas Tipo C/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células NIH 3T3 , Ligação Proteica , Proteínas Serina-Treonina Quinases , Linfócitos T/metabolismo , Transcrição Gênica , Proteínas ras/metabolismo
3.
Methods Enzymol ; 439: 87-102, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18374158

RESUMO

K-Ras is a member of a family of proteins that associate with the plasma membrane by virtue of a lipid modification that inserts into the membrane and a polybasic region that associates with the anionic head groups of inner leaflet phospholipids. In the case of K-Ras, the lipid is a C-terminal farnesyl isoprenoid adjacent to a polylysine sequence. The affinity of K-Ras for the plasma membrane can be modulated by diminishing the net charge of the polybasic region. Among the ways this can be accomplished is phosphorylation by protein kinase C (PKC) of serine 181 within the polybasic region. Phosphorylation at this site regulates a farnesyl-electrostatic switch that controls association of K-Ras with the plasma membrane. Surprisingly, engagement of the farnesyl-electrostatic switch promotes apoptosis. This chapter describes methods for directly analyzing the phosphorylation status of K-Ras using metabolic labeling with (32)P, for indirectly assessing the farnesyl-electrostatic switch by following GFP-tagged K-Ras in live cells, for artificially activating the farnesyl-electrostatic switch by directing the kinase domain of a PKC to activated K-Ras using a Ras-binding domain, and for assessing apoptosis of individual cells using a YFP-tagged caspase 3 biosensor.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas ras/metabolismo , Animais , Células COS , Caspases/metabolismo , Chlorocebus aethiops , Humanos , Células Jurkat , Fosforilação , Proteína Quinase C/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas/fisiologia , Transfecção/métodos , Proteínas ras/fisiologia
4.
Mol Cell Biol ; 28(8): 2659-74, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18268007

RESUMO

The three closely related human Ras genes, Hras, Nras, and Kras, are all widely expressed, engage a common set of downstream effectors, and can each exhibit oncogenic activity. However, the vast majority of activating Ras mutations in human tumors involve Kras. Moreover, Kras mutations are most frequently seen in tumors of endodermally derived tissues (lung, pancreas, and colon), suggesting that activated Kras may affect an endodermal progenitor to initiate oncogenesis. Using a culture model of retinoic acid (RA)-induced stem cell differentiation to endoderm, we determined that while activated HrasV12 promotes differentiation and growth arrest in these endodermal progenitors, KrasV12 promotes their proliferation. Furthermore, KrasV12-expressing endodermal progenitors fail to differentiate upon RA treatment and continue to proliferate and maintain stem cell characteristics. NrasV12 neither promotes nor prevents differentiation. A structure-function analysis demonstrated that these distinct effects of the Ras isoforms involve their variable C-terminal domains, implicating compartmentalized signaling, and revealed a requirement for several established Ras effectors. These findings indicate that activated Ras isoforms exert profoundly different effects on endodermal progenitors and that mutant Kras may initiate tumorigenesis by expanding a susceptible stem/progenitor cell population. These results potentially explain the high frequency of Kras mutations in tumors of endodermal origin.


Assuntos
Diferenciação Celular , Endoderma/citologia , Neoplasias/enzimologia , Neoplasias/patologia , Proteínas Proto-Oncogênicas/metabolismo , Células-Tronco/citologia , Células-Tronco/enzimologia , Proteínas ras/metabolismo , Linhagem Celular , Linhagem da Célula , Proliferação de Células , Endoderma/enzimologia , Ativação Enzimática , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Mutação/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Quinases raf/metabolismo , Fator ral de Troca do Nucleotídeo Guanina/metabolismo , Proteínas ras/genética
5.
Methods Enzymol ; 407: 128-43, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16757320

RESUMO

Several genetically encoded fluorescent biosensors for Ras family GTPases have been developed that permit spatiotemporal analysis of the activation of these signaling molecules in living cells. We describe here the use of the simplest of these probes, the Ras binding domain (RBD) of selected effectors fused with green fluorescent protein (GFP) or one of its spectral mutants. When expressed in quiescent cells, these probes are distributed homogeneously through the cytosol and nucleoplasm. On activation of their cognate GTPases on membranes, they are recruited to these compartments, and activation can be scored by redistribution of the probe. The advantage of this system is its simplicity: the probes are genetically encoded and can easily be constructed with standard cloning techniques, and the readout of activation requires only standard epifluorescence or confocal microscopy. The disadvantage of the system is that only rarely are Ras-related GTPases expressed at high enough levels to permit detection of the activation of the endogenous proteins. In general, the method requires overexpressing untagged, wild-type versions of the GTPase of interest. However, we describe a FRET-based method called bystander FRET developed to detect endogenous proteins that can be used to validate the results obtained by overexpressing Ras proteins. By use of this technique, we and others have uncovered important new features of the spatiotemporal regulation of Ras and related GTPases.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas ras/metabolismo , Animais , Células COS , Chlorocebus aethiops , Clonagem Molecular , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Microscopia Confocal , Proteínas Recombinantes de Fusão/metabolismo , Fator ral de Troca do Nucleotídeo Guanina/metabolismo
6.
Mol Cell ; 21(4): 481-93, 2006 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16483930

RESUMO

K-Ras associates with the plasma membrane (PM) through farnesylation that functions in conjunction with an adjacent polybasic sequence. We show that phosphorylation by protein kinase C (PKC) of S181 within the polybasic region promotes rapid dissociation of K-Ras from the PM and association with intracellular membranes, including the outer membrane of mitochondria where phospho-K-Ras interacts with Bcl-XL. PKC agonists promote apoptosis of cells transformed with oncogenic K-Ras in a S181-dependent manner. K-Ras with a phosphomimetic residue at position 181 induces apoptosis via a pathway that requires Bcl-XL. The PKC agonist bryostatin-1 inhibited the growth in vitro and in vivo of cells transformed with oncogenic K-Ras in a S181-dependent fashion. These data demonstrate that the location and function of K-Ras are regulated directly by PKC and suggest an approach to therapy of K-Ras-dependent tumors with agents that stimulate phosphorylation of S181.


Assuntos
Apoptose/fisiologia , Genes ras , Mitocôndrias/metabolismo , Proteína Quinase C/metabolismo , Proteína bcl-X/metabolismo , Sequência de Aminoácidos , Animais , Antineoplásicos/metabolismo , Briostatinas , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrolídeos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Mitocôndrias/ultraestrutura , Dados de Sequência Molecular , Substrato Quinase C Rico em Alanina Miristoilada , Neoplasias/metabolismo , Neoplasias/patologia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina/metabolismo , Transdução de Sinais/fisiologia , Eletricidade Estática , Linfócitos T/fisiologia
7.
J Lipid Res ; 47(4): 734-44, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16449762

RESUMO

In analyzing the sequence tags for mutant mouse embryonic stem (ES) cell lines in BayGenomics (a mouse gene-trapping resource), we identified a novel gene, 1-acylglycerol-3-phosphate O-acyltransferase (Agpat6), with sequence similarities to previously characterized glycerolipid acyltransferases. Agpat6's closest family member is another novel gene that we have provisionally designated Agpat8. Both Agpat6 and Agpat8 are conserved from plants, nematodes, and flies to mammals. AGPAT6, which is predicted to contain multiple membrane-spanning helices, is found exclusively within the endoplasmic reticulum (ER) in mammalian cells. To gain insights into the in vivo importance of Agpat6, we used the Agpat6 ES cell line from BayGenomics to create Agpat6-deficient (Agpat6-/-) mice. Agpat6-/- mice lacked full-length Agpat6 transcripts, as judged by northern blots. One of the most striking phenotypes of Agpat6-/- mice was a defect in lactation. Pups nursed by Agpat6-/- mothers die perinatally. Normally, Agpat6 is expressed at high levels in the mammary epithelium of breast tissue, but not in the surrounding adipose tissue. Histological studies revealed that the aveoli and ducts of Agpat6-/- lactating mammary glands were underdeveloped, and there was a dramatic decrease in the size and number of lipid droplets within mammary epithelial cells and ducts. Also, the milk from Agpat6-/- mice was markedly depleted in diacylglycerols and triacylglycerols. Thus, we identified a novel glycerolipid acyltransferase of the ER, AGPAT6, which is crucial for the production of milk fat by the mammary gland.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Células Epiteliais/enzimologia , Isoenzimas/metabolismo , Lipídeos/biossíntese , Glândulas Mamárias Humanas/enzimologia , Triglicerídeos/biossíntese , 1-Acilglicerol-3-Fosfato O-Aciltransferase/classificação , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Retículo Endoplasmático/metabolismo , Células Epiteliais/citologia , Feminino , Humanos , Isoenzimas/classificação , Isoenzimas/genética , Masculino , Glândulas Mamárias Humanas/anatomia & histologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Leite/química , Dados de Sequência Molecular , Filogenia , Gravidez , Alinhamento de Sequência , Células de Sertoli/citologia , Células de Sertoli/enzimologia , Distribuição Tecidual
8.
Curr Opin Cell Biol ; 18(2): 162-7, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16488589

RESUMO

The discovery that Ras proteins are modified by enzymes restricted to the endoplasmic reticulum and Golgi apparatus and that, at steady state, a significant pool of Ras is localized on the Golgi has led to the hypothesis that Ras can become activated on and signal from intracellular membranes. Fluorescent probes capable of showing when and where in living cells Ras becomes activated together with studies of Ras proteins stringently tethered to intracellular membranes have confirmed this hypothesis. Thus, recent studies of Ras have contributed to the rapidly expanding field of compartmentalized signaling.


Assuntos
Complexo de Golgi/metabolismo , Transdução de Sinais/fisiologia , Proteínas ras/fisiologia , Animais , Humanos , Modelos Biológicos , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA