Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 20(7): 1104-1113, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37429962

RESUMO

Genetically encoded voltage indicators (GEVIs) enable optical recording of electrical signals in the brain, providing subthreshold sensitivity and temporal resolution not possible with calcium indicators. However, one- and two-photon voltage imaging over prolonged periods with the same GEVI has not yet been demonstrated. Here, we report engineering of ASAP family GEVIs to enhance photostability by inversion of the fluorescence-voltage relationship. Two of the resulting GEVIs, ASAP4b and ASAP4e, respond to 100-mV depolarizations with ≥180% fluorescence increases, compared with the 50% fluorescence decrease of the parental ASAP3. With standard microscopy equipment, ASAP4e enables single-trial detection of spikes in mice over the course of minutes. Unlike GEVIs previously used for one-photon voltage recordings, ASAP4b and ASAP4e also perform well under two-photon illumination. By imaging voltage and calcium simultaneously, we show that ASAP4b and ASAP4e can identify place cells and detect voltage spikes with better temporal resolution than commonly used calcium indicators. Thus, ASAP4b and ASAP4e extend the capabilities of voltage imaging to standard one- and two-photon microscopes while improving the duration of voltage recordings.


Assuntos
Encéfalo , Cálcio , Animais , Camundongos , Iluminação , Microscopia , Fótons
2.
ACS Appl Mater Interfaces ; 15(27): 33028-33036, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37368963

RESUMO

The structural characteristics of supports, such as surface area and type of porosity, affect the deposition of electrocatalysts and greatly influence their electrochemical performance in fuel cells. In this work, we use a series of high surface area hierarchical porous carbons (HPCs) with defined mesoporosity as model supports to study the deposition mechanism of Pt nanoparticles. The resulting electrocatalysts are characterized by several analytical techniques, and their electrochemical performance is compared to a state-of-the-art, commercial Pt/C system. Despite the similar chemical composition and surface area of the supports, as well as similar amounts of Pt precursor used, the size of the deposited Pt nanoparticles varies, and it is inversely proportional to the mesopore size of the system. In addition, we show that an increase in the size of the catalyst particles can increase the specific activity of the oxygen reduction reaction. We also report on our efforts to improve the overall performance of the above electrocatalyst systems and show that increasing the electronic conductivity of the carbon support by the addition of highly conductive graphene sheets improves the overall performance of an alkaline fuel cell.

3.
Proc Natl Acad Sci U S A ; 117(51): 32711-32721, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33277431

RESUMO

CLC-2 is a voltage-gated chloride channel that is widely expressed in mammalian tissues. In the central nervous system, CLC-2 appears in neurons and glia. Studies to define how this channel contributes to normal and pathophysiological function in the central nervous system raise questions that remain unresolved, in part due to the absence of precise pharmacological tools for modulating CLC-2 activity. Herein, we describe the development and optimization of AK-42, a specific small-molecule inhibitor of CLC-2 with nanomolar potency (IC50 = 17 ± 1 nM). AK-42 displays unprecedented selectivity (>1,000-fold) over CLC-1, the closest CLC-2 homolog, and exhibits no off-target engagement against a panel of 61 common channels, receptors, and transporters expressed in brain tissue. Computational docking, validated by mutagenesis and kinetic studies, indicates that AK-42 binds to an extracellular vestibule above the channel pore. In electrophysiological recordings of mouse CA1 hippocampal pyramidal neurons, AK-42 acutely and reversibly inhibits CLC-2 currents; no effect on current is observed on brain slices taken from CLC-2 knockout mice. These results establish AK-42 as a powerful tool for investigating CLC-2 neurophysiology.


Assuntos
Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Sítios de Ligação , Células CHO , Canais de Cloro CLC-2 , Linhagem Celular , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Cricetulus , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Hipocampo/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Simulação de Acoplamento Molecular , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Relação Estrutura-Atividade
4.
Cell Rep ; 18(6): 1512-1526, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178527

RESUMO

Homeostatic scaling allows neurons to maintain stable activity patterns by globally altering their synaptic strength in response to changing activity levels. Suppression of activity by the blocking of action potentials increases synaptic strength through an upregulation of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Although this synaptic upscaling was shown to require transcription, the molecular nature of the intrinsic transcription program underlying this process and its functional significance have been unclear. Using RNA-seq, we identified 73 genes that were specifically upregulated in response to activity suppression. In particular, Neuronal pentraxin-1 (Nptx1) increased within 6 hr of activity blockade, and knockdown of this gene blocked the increase in synaptic strength. Nptx1 induction is mediated by calcium influx through the T-type voltage-gated calcium channel, as well as two transcription factors, SRF and ELK1. Altogether, these results uncover a transcriptional program that specifically operates when neuronal activity is suppressed to globally coordinate the increase in synaptic strength.


Assuntos
Neurônios/fisiologia , Sinapses/fisiologia , Transcrição Gênica/fisiologia , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo T/metabolismo , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/fisiologia , Homeostase/fisiologia , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima/fisiologia
5.
Elife ; 52016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27882871

RESUMO

Recent studies indicate that within individual synapses spontaneous and evoked release processes are segregated and regulated independently. In the hippocampus, earlier electrophysiological recordings suggested that spontaneous and evoked glutamate release can activate separate groups of postsynaptic NMDA receptors with limited overlap. However, it is still unclear how this separation of NMDA receptors is distributed across individual synapses. In a previous paper (Reese and Kavalali, 2015) we showed that NMDA receptor mediated spontaneous transmission signals to the postsynaptic protein translation machinery through Ca2+-induced Ca2+ release. Here, we show that in rat hippocampal neurons although spontaneous and evoked glutamate release driven NMDA receptor mediated Ca2+ transients often occur at the same synapse, these two signals do not show significant correlation or cross talk.


Assuntos
Hipocampo/parasitologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Transmissão Sináptica , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Ratos
6.
Science ; 351(6270): 271-5, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26816378

RESUMO

Muscle contraction depends on release of Ca(2+) from the sarcoplasmic reticulum (SR) and reuptake by the Ca(2+)adenosine triphosphatase SERCA. We discovered a putative muscle-specific long noncoding RNA that encodes a peptide of 34 amino acids and that we named dwarf open reading frame (DWORF). DWORF localizes to the SR membrane, where it enhances SERCA activity by displacing the SERCA inhibitors, phospholamban, sarcolipin, and myoregulin. In mice, overexpression of DWORF in cardiomyocytes increases peak Ca(2+) transient amplitude and SR Ca(2+) load while reducing the time constant of cytosolic Ca(2+) decay during each cycle of contraction-relaxation. Conversely, slow skeletal muscle lacking DWORF exhibits delayed Ca(2+) clearance and relaxation and reduced SERCA activity. DWORF is the only endogenous peptide known to activate the SERCA pump by physical interaction and provides a means for enhancing muscle contractility.


Assuntos
Contração Muscular , Músculo Esquelético/metabolismo , Miócitos Cardíacos/metabolismo , Peptídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Humanos , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Contração Miocárdica , Peptídeos/genética , Proteolipídeos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Retículo Sarcoplasmático/metabolismo , Transcrição Gênica
7.
Pharmacotherapy ; 35(9): 823-37, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26406774

RESUMO

There has been a 10-year hiatus in the approval of a new pharmacotherapy for patients with chronic heart failure with a reduced ejection fraction (HFrEF). Combining an angiotensin receptor blocker, valsartan, with sacubitril, an inhibitor of neprilysin, results in increasing levels of natriuretic peptides that counterbalance high circulating levels of neurohormones in HFrEF. This has resulted in the development of a new agent, LCZ696. A comprehensive overview of LCZ696, its pharmacology, its role in the pathophysiology of HFrEF, completed and future clinical trial information, specific critical issues, and the place of LCZ696 in HFrEF therapy are presented.


Assuntos
Aminobutiratos/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Neprilisina/antagonistas & inibidores , Tetrazóis/uso terapêutico , Aminobutiratos/farmacologia , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Compostos de Bifenilo , Doença Crônica , Combinação de Medicamentos , Desenho de Fármacos , Insuficiência Cardíaca/fisiopatologia , Humanos , Tetrazóis/farmacologia , Valsartana
8.
Elife ; 42015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26208337

RESUMO

Spontaneous glutamate release-driven NMDA receptor activity exerts a strong influence on synaptic homeostasis. However, the properties of Ca(2+) signals that mediate this effect remain unclear. Here, using hippocampal neurons labeled with the fluorescent Ca(2+) probes Fluo-4 or GCAMP5, we visualized action potential-independent Ca(2+) transients in dendritic regions adjacent to fluorescently labeled presynaptic boutons in physiological levels of extracellular Mg(2+). These Ca(2+) transients required NMDA receptor activity, and their propensity correlated with acute or genetically induced changes in spontaneous neurotransmitter release. In contrast, they were insensitive to blockers of AMPA receptors, L-type voltage-gated Ca(2+) channels, or group I mGluRs. However, inhibition of Ca(2+)-induced Ca(2+) release suppressed these transients and elicited synaptic scaling, a process which required protein translation and eukaryotic elongation factor-2 kinase activity. These results support a critical role for Ca(2+)-induced Ca(2+) release in amplifying NMDA receptor-driven Ca(2+) signals at rest for the maintenance of synaptic homeostasis.


Assuntos
Potenciais de Ação , Cálcio/metabolismo , Homeostase , Neurônios/fisiologia , Sinapses/metabolismo , Animais , Células Cultivadas , Camundongos Knockout , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
9.
Neuron ; 80(4): 934-46, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24210904

RESUMO

Reelin is a glycoprotein that is critical for proper layering of neocortex during development as well as dynamic regulation of glutamatergic postsynaptic signaling in mature synapses. Here, we show that Reelin also acts presynaptically, resulting in robust rapid enhancement of spontaneous neurotransmitter release without affecting properties of evoked neurotransmission. This effect of Reelin requires a modest but significant increase in presynaptic Ca(2+) initiated via ApoER2 signaling. The specificity of Reelin action on spontaneous neurotransmitter release is encoded at the level of vesicular SNARE machinery as it requires VAMP7 and SNAP-25 but not synaptobrevin2, VAMP4, or vti1a. These results uncover a presynaptic regulatory pathway that utilizes the heterogeneity of synaptic vesicle-associated SNAREs and selectively augments action potential-independent neurotransmission.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Proteínas R-SNARE/fisiologia , Serina Endopeptidases/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Apolipoproteínas E/metabolismo , Sinalização do Cálcio/fisiologia , Moléculas de Adesão Celular Neuronais/genética , Células Cultivadas , Fenômenos Eletrofisiológicos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas da Matriz Extracelular/genética , Feminino , Lentivirus/genética , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas R-SNARE/genética , Ratos , Ratos Sprague-Dawley , Proteína Reelina , Proteínas SNARE/metabolismo , Serina Endopeptidases/genética , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/fisiologia , Tetrodotoxina/farmacologia
10.
Oecologia ; 164(4): 993-1004, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20680646

RESUMO

Peroxidases (PODs) are believed to act as induced and constitutive defenses in plants against leaf-feeding insects. However, little work has examined the mode of action of PODs against insects. Putative mechanisms include the production of potentially antinutritive and/or toxic semiquinone free radicals and quinones (from the oxidation of phenolics), as well as increased leaf toughness. In this study, transgenic hybrid poplar saplings (Populus tremula × Populus alba) overexpressing horseradish peroxidase (HRP) were produced to examine the impact of elevated HRP levels on the performance and gut biochemistry of Lymantria dispar caterpillars. HRP-overexpressing poplars were more resistant to L. dispar than wild-type (WT) poplars when the level of a phenolic substrate of HRP (chlorogenic acid) was increased, but only when leaves had prior feeding damage. Damaged (induced) leaves produced increased amounts of hydrogen peroxide, which was used by HRP to increase the production of semiquinone radicals in the midguts of larvae. The decreased growth rates of larvae that fed on induced HRP-overexpressing poplars resulted from post-ingestive mechanisms, consistent with the action of HRP in their midguts. The toughness of HRP-overexpressing leaves was not significantly greater than that of WT leaves, whether or not they were induced. When leaves were coated with ellagitannins, induced HRP leaves also produced elevated levels of semiquinone radicals in the midgut. Decreased larval performance on induced HRP leaves in this case was due to post-ingestive mechanisms as well as decreased consumption. The results of this study provide the first demonstration that a POD is able to oxidize phenolics within an insect herbivore's gut, and further clarifies the chemical conditions that must be present for PODs to function as antiherbivore defenses.


Assuntos
Cadeia Alimentar , Peroxidase do Rábano Silvestre/genética , Lepidópteros/metabolismo , Folhas de Planta/enzimologia , Animais , Benzoquinonas/metabolismo , Trato Gastrointestinal/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Lepidópteros/crescimento & desenvolvimento , Folhas de Planta/química , Folhas de Planta/genética , Populus/genética , Populus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA