Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37109863

RESUMO

The unique flash heating characteristics of intense pulsed ion beams (IPIB) offer potential advantages to fabricate high-performance coatings with non-equilibrium structures. In this study, titanium-chromium (Ti-Cr) alloy coatings are prepared through magnetron sputtering and successive IPIB irradiation, and the feasibility of IPIB melt mixing (IPIBMM) for a film-substrate system is verified via finite elements analysis. The experimental results reveal that the melting depth is 1.15 µm under IPIB irradiation, which is in close agreement with the calculation value (1.18 µm). The film and substrate form a Ti-Cr alloy coating by IPIBMM. The coating has a continuous gradient composition distribution, metallurgically bonding on the Ti substrate via IPIBMM. Increasing the IPIB pulse number leads to more complete element mixing and the elimination of surface cracks and craters. Additionally, the IPIB irradiation induces the formation of supersaturated solid solutions, lattice transition, and preferred orientation change, contributing to an increase in hardness and a decrease in elastic modulus with continuous irradiation. Notably, the coating treated with 20 pulses demonstrates a remarkable hardness (4.8 GPa), more than twice that of pure Ti, and a lower elastic modulus (100.3 GPa), 20% less than that of pure Ti. The analysis of the load-displacement curves and H-E ratios indicates that the Ti-Cr alloy coated samples exhibit better plasticity and wear resistance compared to pure Ti. Specifically, the coating formed after 20 pulses exhibits exceptional wear resistance, as demonstrated by its H3/E2 value being 14 times higher than that of pure Ti. This development provides an efficient and eco-friendly method for designing robust-adhesion coatings with specific structures, which can be extended to various bi- or multi-element material systems.

2.
Nanomaterials (Basel) ; 11(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440905

RESUMO

We experimentally and theoretically investigated the effects of ionizing radiation on a stack of graphene sheets separated by polymethyl methacrylate (PMMA) slabs. The exceptional absorption ability of such a heterostructure in the THz range makes it promising for use in a graphene-based THz bolometer to be deployed in space. A hydrogen/carbon ion beam was used to simulate the action of protons and secondary ions on the device. We showed that the graphene sheets remain intact after irradiation with an intense 290 keV ion beam at the density of 1.5 × 1012 cm-2. However, the THz absorption ability of the graphene/PMMA multilayer can be substantially suppressed due to heating damage of the topmost PMMA slabs produced by carbon ions. By contrast, protons do not have this negative effect due to their much longer mean free pass in PMMA. Since the particles' flux at the geostationary orbit is significantly lower than that used in our experiments, we conclude that it cannot cause tangible damage of the graphene/PMMA based THz absorber. Our numerical simulations reveal that, at the geostationary orbit, the damaging of the graphene/PMMA multilayer due to the ions bombardment is sufficiently lower to affect the performance of the graphene/PMMA multilayer, the main working element of the THz bolometer, which remains unchanged for more than ten years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA