Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Naturae ; 15(4): 32-43, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38234603

RESUMO

The recent advances achieved in microscopy technology have led to a significant breakthrough in biological research. Super-resolution fluorescent microscopy now allows us to visualize subcellular structures down to the pin-pointing of the single molecules in them, while modern electron microscopy has opened new possibilities in the study of protein complexes in their native, intracellular environment at near-atomic resolution. Nonetheless, both fluorescent and electron microscopy have remained beset by their principal shortcomings: the reliance on labeling procedures and severe sample volume limitations, respectively. Soft X-ray microscopy is a candidate method that can compensate for the shortcomings of both technologies by making possible observation of the entirety of the cellular interior without chemical fixation and labeling with an isotropic resolution of 40-70 nm. This will thus bridge the resolution gap between light and electron microscopy (although this gap is being narrowed, it still exists) and resolve the issue of compatibility with the former, and possibly in the near future, the latter methods. This review aims to assess the current state of soft X-ray microscopy and its impact on our understanding of the subcellular organization. It also attempts to look into the future of X-ray microscopy, particularly as relates to its seamless integration into the cell biology toolkit.

2.
Opt Express ; 30(26): 47567-47586, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558683

RESUMO

The article is devoted to the development of an EUV microscope using a wavelength of 13.84 nm. Due to the use of a mirror lens with a large numerical aperture, NA = 0.27, and a short depth of focus, it has been possible to carry out z-tomography of bio-samples for the first time with this type of microscope. A 3D image was reconstructed, and a pixel resolution of 140 nm was obtained. A new simple algorithm for the 3D reconstruction of absorption images from z-tomography data has been proposed that takes into account lens aberrations and a point spread function. The algorithm reduces the inverse absorption task to the corresponding well-studied task of fluorescence microscopy, with an error of 10% for cells up to 10 µm thick.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA