Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(12): e32122, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39021935

RESUMO

The importance of the dependencies between water and power systems is more acutely perceived when challenges emerge. As both energy and water supply are limited, efficient use is a must for any sustainable future, especially in rural areas. Although important, a modeling tool that can analyze water-energy systems interdependencies in rural systems, at the architectural level highlighting the physical interconnections and synergies of these systems, is still lacking. We present a multi-agent system model that captures the features of both systems, at the same levels of fidelity and resolution, with coordinated operations and contingency components represented. Unlike other models, ours captures architectural features of both systems and technical constraints of the systems' components, which is critical to capture physical intricacies of the interplay between systems components and shed light on the impacts of disruptions of either system on the other. This model, which includes multiple infrastructure components, shows the importance of a holistic understanding of the systems, for cooperation across systems physical boundaries and enhanced benefits at larger scales. This study looks to investigate water-power resource management in an irrigation system via the analysis of physical links and highlight strengths and vulnerabilities. The effects of water shortage, water re-allocation and load shedding are analyzed through scenarios designed to illustrate the utility of such a model. Results highlights the importance of inter-reservoir relationships for alleviating effects of disruption and unforeseen rise in energy demand. Water storage is also critical, helping to mitigate the impacts of water scarcity, and by extension, to keep the energy system unaffected. It can be a viable part of the solution to compensate for the negative impact of shortage for both resources.

2.
Sci Rep ; 13(1): 6813, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100831

RESUMO

Biofuels made from biomass and waste residues will largely contribute to United States' 2050 decarbonization goal in the aviation sector. While cellulosic biofuels have the potential fuel performance equivalent to petroleum-based jet fuel, the biofuel industry needs to overcome the supply chain barrier caused by temporal and spatial variability of biomass yield and quality. This study highlights the importance of incorporating spatial and temporal variability during biomass supply chain planning via optimization modeling that incorporates 10 years of drought index data, a primary factor contributing to yield and quality variability. The results imply that the cost of delivering biomass to biorefinery may be significantly underestimated if the multi-year temporal and spatial variation in biomass yield and quality is not captured. For long term sustainable biorefinery operations, the industry should optimize supply chain strategy by studying the variability of yield and quality of biomass in their supply sheds.

3.
Bioresour Technol ; 194: 205-13, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26196421

RESUMO

Decentralized biomass processing facilities, known as biomass depots, may be necessary to achieve feedstock cost, quantity, and quality required to grow the future U.S. bioeconomy. In this paper, we assess three distinct depot configurations for technical difference and economic performance. The depot designs were chosen to compare and contrast a suite of capabilities that a depot could perform ranging from conventional pelleting to sophisticated pretreatment technologies. Our economic analyses indicate that depot processing costs are likely to range from ∼US$30 to US$63 per dry metric tonne (Mg), depending upon the specific technology implemented and the energy consumption for processing equipment such as grinders and dryers. We conclude that the benefits of integrating depots into the overall biomass feedstock supply chain will outweigh depot processing costs and that incorporation of this technology should be aggressively pursued.


Assuntos
Biomassa , Biotecnologia/economia , Biotecnologia/métodos , Ácidos/química , Amônia/química , Custos e Análise de Custo , Umidade
4.
Environ Manage ; 56(6): 1397-415, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26122631

RESUMO

The biomass supply chain is one of the most critical elements of large-scale bioenergy production and in many cases a key barrier for procuring initial funding for new developments on specific energy crops. Most productions rely on complex transforming chains linked to feed and food markets. The term 'supply chain' covers various aspects from cultivation and harvesting of the biomass, to treatment, transportation, and storage. After energy conversion, the product must be delivered to final consumption, whether it is in the form of electricity, heat, or more tangible products, such as pellets and biofuels. Effective supply chains are of utmost importance for bioenergy production, as biomass tends to possess challenging seasonal production cycles and low mass, energy and bulk densities. Additionally, the demand for final products is often also dispersed, further complicating the supply chain. The goal of this paper is to introduce key components of biomass supply chains, examples of related modeling applications, and if/how they address aspects related to environmental metrics and management. The paper will introduce a concept of integrated supply systems for sustainable biomass trade and the factors influencing the bioenergy supply chain landscape, including models that can be used to investigate the factors. The paper will also cover various aspects of transportation logistics, ranging from alternative modal and multi-modal alternatives to introduction of support tools for transportation analysis. Finally gaps and challenges in supply chain research are identified and used to outline research recommendations for the future direction in this area of study.


Assuntos
Agricultura/métodos , Biocombustíveis/provisão & distribuição , Biomassa , Conservação de Recursos Energéticos , Meios de Transporte , Agricultura/tendências , Produtos Agrícolas , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA