Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Bone ; 187: 117209, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39047900

RESUMO

Complications of diabetes is a major health problem affecting multiple organs including bone, where the chronic disease increases the risk of fragility fractures. One hypothesis suggests a pathogenic role for hyperglycemia-induced modification of proteins, a.k.a. advanced glycation end products (AGEs), resulting in structural and functional damage to bone extracellular matrix (ECM). Evidence supporting this hypothesis has been limited by the lack of comprehensive information about the location of AGEs that accumulate in vivo at specific sites within the proteins of bone ECM. Analyzing extracts from cortical bone of cadaveric femurs by liquid chromatography tandem mass spectrometry, we generated a quantitative AGE map of human collagen I for male and female adult donors with and without diabetes. The map describes the chemical nature, sequence position, and levels of four major physiological AGEs, e.g. carboxymethyllysine, and an AGE precursor fructosyllysine within the collagen I triple-helical region. The important features of the map are: 1) high map reproducibility in the individual bone extracts, i.e. 20 male and 20 female donors; 2) localization of modifications to distinct clusters: 10 clusters containing 34 AGE sites in male donors and 9 clusters containing 28 sites in female donors; 3) significant increases in modification levels in diabetes at multiple sites: 26 out of 34 sites in males and in 17 out of 28 sites in females; and 4) generally higher modification levels in male vs. female donors. Moreover, the AGE levels at multiple individual sites correlated with total bone pentosidine levels in male but not in female donors. Molecular dynamics simulations and molecular modeling predicted significant impact of modifications on solvent exposure, charge distribution, and hydrophobicity of the triple helix as well as disruptions to the structure of collagen I fibril. In summary, the AGE map of collagen I revealed diabetes-induced, sex-specific non-enzymatic modifications at distinct triple helical sites that can disrupt collagen structure, thus proposing a specific mechanism of AGE contribution to diabetic complications in human bone.


Assuntos
Colágeno Tipo I , Osso Cortical , Diabetes Mellitus Tipo 2 , Produtos Finais de Glicação Avançada , Humanos , Masculino , Feminino , Osso Cortical/metabolismo , Osso Cortical/patologia , Diabetes Mellitus Tipo 2/metabolismo , Colágeno Tipo I/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Pessoa de Meia-Idade , Idoso , Adulto , Caracteres Sexuais
2.
Nat Commun ; 15(1): 5144, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886379

RESUMO

The renal epithelium is sensitive to changes in blood potassium (K+). We identify the basolateral K+ channel, Kir4.2, as a mediator of the proximal tubule response to K+ deficiency. Mice lacking Kir4.2 have a compensated baseline phenotype whereby they increase their distal transport burden to maintain homeostasis. Upon dietary K+ depletion, knockout animals decompensate as evidenced by increased urinary K+ excretion and development of a proximal renal tubular acidosis. Potassium wasting is not proximal in origin but is caused by higher ENaC activity and depends upon increased distal sodium delivery. Three-dimensional imaging reveals Kir4.2 knockouts fail to undergo proximal tubule expansion, while the distal convoluted tubule response is exaggerated. AKT signaling mediates the dietary K+ response, which is blunted in Kir4.2 knockouts. Lastly, we demonstrate in isolated tubules that AKT phosphorylation in response to low K+ depends upon mTORC2 activation by secondary changes in Cl- transport. Data support a proximal role for cell Cl- which, as it does along the distal nephron, responds to K+ changes to activate kinase signaling.


Assuntos
Túbulos Renais Proximais , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos Knockout , Canais de Potássio Corretores do Fluxo de Internalização , Potássio , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Serina-Treonina Quinases TOR/metabolismo , Potássio/metabolismo , Túbulos Renais Proximais/metabolismo , Camundongos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Fosforilação , Masculino , Cloretos/metabolismo , Camundongos Endogâmicos C57BL
3.
Elife ; 122024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682900

RESUMO

The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the 'WIN' site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteína de Leucina Linfoide-Mieloide , Proteínas Nucleares , Ribossomos , Proteína Supressora de Tumor p53 , Humanos , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Peptidomiméticos/farmacologia
4.
J Biol Chem ; 300(3): 105688, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280431

RESUMO

Cytochrome b5 (b5) is known to stimulate some catalytic activities of cytochrome P450 (P450, CYP) enzymes, although mechanisms still need to be defined. The reactions most strongly enhanced by b5 are the 17,20-lyase reactions of P450 17A1 involved in steroid biosynthesis. We had previously used a fluorescently labeled human b5 variant (Alexa 488-T70C-b5) to characterize human P450 17A1-b5 interactions, but subsequent proteomic analyses indicated that lysines in b5 were also modified with Alexa 488 maleimide in addition to Cys-70, due to disulfide dimerization of the T70C mutant. A series of b5 variants were constructed with Cys replacements for the identified lysine residues and labeled with the dye. Fluorescence attenuation and the function of b5 in the steroid lyase reaction depended on the modified position. Apo-b5 (devoid of heme group) studies revealed the lack of involvement of the b5 heme in the fluorescence attenuation. A structural model of b5 with P450 17A1 was predicted using AlphaFold-Multimer algorithms/Rosetta docking, based upon the individual structures, which predicted several new contacts not previously reported, that is, interactions of b5 Glu-48:17A1 Arg-347, b5 Glu-49:17A1 Arg-449, b5 Asp-65:17A1 Arg-126, b5 Asp-65:17A1 Arg-125, and b5 Glu-61:17A1 Lys-91. Fluorescence polarization assays with two modified b5 variants yielded Kd values (for b5-P450 17A1) of 120 to 380 nM, the best estimate of binding affinity. We conclude that both monomeric and dimeric b5 can bind to P450 17A1 and stimulate activity. Results with the mutants indicate that several Lys residues in b5 are sensitive to the interaction with P450 17A1, including Lys-88 and Lys-91.


Assuntos
Citocromos b5 , Modelos Moleculares , Esteroide 17-alfa-Hidroxilase , Humanos , Citocromos b5/genética , Citocromos b5/metabolismo , Fluorescência , Heme , Proteômica , Esteroide 17-alfa-Hidroxilase/química , Esteroide 17-alfa-Hidroxilase/metabolismo , Ligação Proteica/genética , Ativação Enzimática/genética , Estrutura Quaternária de Proteína , Mutação
5.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37546802

RESUMO

The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the "WIN" site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small molecule WIN site inhibitors, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anti-cancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anti-cancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.

6.
Biochem Biophys Res Commun ; 689: 149237, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37984175

RESUMO

Diabetic complications present a serious health problem. Functional damage to proteins due to post-translational modifications by glycoxidation reactions is a known factor contributing to pathology. Extracellular proteins are especially vulnerable to diabetic damage because robust antioxidant defenses are lacking outside the cell. We investigated glucose-induced inactivation of peroxidasin (PXDN), a heme protein catalyzing sulfilimine crosslinking of collagen IV that reinforce the basement membranes (BM). Experiments using physiological diabetic glucose levels were carried out to exclude several potential mechanisms of PXDN inactivation i.e., direct adduction of glucose, reactive carbonyl damage, steric hindrance, and osmotic stress. Further experiments established that PXDN activity was inhibited via heme degradation by reactive oxygen species. Activity of another extracellular heme protein, myeloperoxidase, was unaffected by glucose because its heme was resistant to glucose-induced oxidative degradation. Our findings point to specific mechanisms which may compromise BM structure and stability in diabetes and suggest potential modes of protection.


Assuntos
Diabetes Mellitus , Hemeproteínas , Hiperglicemia , Humanos , Peroxidase/metabolismo , Espécies Reativas de Oxigênio , Heme , Proteínas da Matriz Extracelular/metabolismo , Glucose , Peroxidasina
7.
Biochem Biophys Res Commun ; 681: 152-156, 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37776746

RESUMO

Peroxidasin (PXDN) is an extracellular peroxidase, which generates hypobromous acid to form sulfilimine cross-links within collagen IV networks. We have previously demonstrated that mouse and human renal basement membranes (BM) are enriched in bromine due to PXDN-dependent post-translational bromination of protein tyrosine residues. The goal of the present study was identification of specific brominated sites within renal BM. A comprehensive analysis of brominated proteome of mouse glomerular matrix had been performed using liquid chromatography-tandem mass spectrometry. We found that out of over 200 identified proteins, only three were detectably brominated, each containing a single distinct brominated tyrosine site i.e., Tyr-1485 in collagen IV α2 chain, Tyr-292 in TINAGL1 and Tyr-664 in nidogen-2. To explain this highly selective bromination, we proposed that these proteins interact with PXDN within the glomerular matrix. Experiments using purified proteins demonstrated that both TINAGL1 and nidogen-2 can compete with PXDN for binding to collagen IV and that TINAGL1 can directly interact with PXDN. We propose that a protein complex, including PXDN, TINAGL1, nidogen-2 and collagen IV, may exist in renal BM.

8.
Redox Biol ; 66: 102869, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37677999

RESUMO

The lens proteome undergoes dramatic composition changes during development and maturation. A defective developmental process leads to congenital cataracts that account for about 30% of cases of childhood blindness. Gene mutations are associated with approximately 50% of early-onset forms of lens opacity, with the remainder being of unknown etiology. To gain a better understanding of cataractogenesis, we utilized a transgenic mouse model expressing a mutant ubiquitin protein in the lens (K6W-Ub) that recapitulates most of the early pathological changes seen in human congenital cataracts. We performed mass spectrometry-based tandem-mass-tag quantitative proteomics in E15, P1, and P30 control or K6W-Ub lenses. Our analysis identified targets that are required for early normal differentiation steps and altered in cataractous lenses, particularly metabolic pathways involving glutathione and amino acids. Computational molecular phenotyping revealed that glutathione and taurine were spatially altered in the K6W-Ub cataractous lens. High-performance liquid chromatography revealed that both taurine and the ratio of reduced glutathione to oxidized glutathione, two indicators of redox status, were differentially compromised in lens biology. In sum, our research documents that dynamic proteome changes in a mouse model of congenital cataracts impact redox biology in lens. Our findings shed light on the molecular mechanisms associated with congenital cataracts and point out that unbalanced redox status due to reduced levels of taurine and glutathione, metabolites already linked to age-related cataract, could be a major underlying mechanism behind lens opacities that appear early in life.


Assuntos
Catarata , Proteoma , Humanos , Animais , Camundongos , Glutationa , Modelos Animais de Doenças , Camundongos Transgênicos , Proteínas Mutantes , Oxirredução , Taurina , Catarata/genética
9.
Gastroenterology ; 165(3): 656-669.e8, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37271289

RESUMO

BACKGROUND & AIMS: The amino acid hypusine, synthesized from the polyamine spermidine by the enzyme deoxyhypusine synthase (DHPS), is essential for the activity of eukaryotic translation initiation factor 5A (EIF5A). The role of hypusinated EIF5A (EIF5AHyp) remains unknown in intestinal homeostasis. Our aim was to investigate EIF5AHyp in the gut epithelium in inflammation and carcinogenesis. METHODS: We used human colon tissue messenger RNA samples and publicly available transcriptomic datasets, tissue microarrays, and patient-derived colon organoids. Mice with intestinal epithelial-specific deletion of Dhps were investigated at baseline and in models of colitis and colon carcinogenesis. RESULTS: We found that patients with ulcerative colitis and Crohn's disease exhibit reduced colon levels of DHPS messenger RNA and DHPS protein and reduced levels of EIF5AHyp. Similarly, colonic organoids from colitis patients also show down-regulated DHPS expression. Mice with intestinal epithelial-specific deletion of Dhps develop spontaneous colon hyperplasia, epithelial proliferation, crypt distortion, and inflammation. Furthermore, these mice are highly susceptible to experimental colitis and show exacerbated colon tumorigenesis when treated with a carcinogen. Transcriptomic and proteomic analysis on colonic epithelial cells demonstrated that loss of hypusination induces multiple pathways related to cancer and immune response. Moreover, we found that hypusination enhances translation of numerous enzymes involved in aldehyde detoxification, including glutathione S-transferases and aldehyde dehydrogenases. Accordingly, hypusination-deficient mice exhibit increased levels of aldehyde adducts in the colon, and their treatment with a scavenger of electrophiles reduces colitis. CONCLUSIONS: Hypusination in intestinal epithelial cells has a key role in the prevention of colitis and colorectal cancer, and enhancement of this pathway via supplementation of spermidine could have a therapeutic impact.


Assuntos
Colite , Espermidina , Humanos , Animais , Camundongos , Espermidina/farmacologia , Espermidina/metabolismo , Proteômica , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Carcinogênese/genética , Colite/induzido quimicamente , Colite/genética , Colite/prevenção & controle , Homeostase , Inflamação
10.
BBA Adv ; 3: 100079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082268

RESUMO

Accumulation of advanced glycation end products (AGEs), particularly in long-lived extracellular matrix proteins, has been implicated in pathogenesis of diabetic complications and in aging. Knowledge about specific locations of AGEs and their precursors within protein primary structure is critical for understanding their physiological and pathophysiological impact. However, the information on specific AGE sites is lacking. Here, we identified sequence positions of four major AGEs, carboxymethyllysine, carboxyethyllysine, 5-hydro-5-methyl imidazolone, and 5-hydro-imidazolone, and an AGE precursor fructosyllysine within the triple helical region of collagen I from cortical bone of human femurs. The presented map provides a basis for site-specific quantitation of AGEs and other non-enzymatic post-translational modifications and identification of those sites affected by aging, diabetes, and other diseases such as osteoporosis; it can also help in guiding future studies of AGE impact on structure and function of collagen I in bone.

11.
Cell Rep ; 42(2): 112109, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36807139

RESUMO

Topological stress can cause converging replication forks to stall during termination of vertebrate DNA synthesis. However, replication forks ultimately overcome fork stalling, suggesting that alternative mechanisms of termination exist. Using proteomics in Xenopus egg extracts, we show that the helicase RTEL1 and the replisome protein MCM10 are highly enriched on chromatin during fork convergence and are crucially important for fork convergence under conditions of topological stress. RTEL1 and MCM10 cooperate to promote fork convergence and do not impact topoisomerase activity but do promote fork progression through a replication barrier. Thus, RTEL1 and MCM10 play a general role in promoting progression of stalled forks, including when forks stall during termination. Our data reveal an alternate mechanism of termination involving RTEL1 and MCM10 that can be used to complete DNA synthesis under conditions of topological stress.


Assuntos
Cromatina , Replicação do DNA , Animais , DNA/metabolismo , Xenopus laevis
12.
Front Ophthalmol (Lausanne) ; 3: 1241001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38983090

RESUMO

Introduction: Protein post-translational modifications (PTMs) have been associated with aging and age-related diseases. PTMs are particularly impactful in long-lived proteins, such as those found in the ocular lens, because they accumulate with age. Two PTMs that lead to protein-protein crosslinks in aged and cataractous lenses are dehydroalanine (DHA) and dehydrobutyrine (DHB); formed from cysteine/serine and threonine residues, respectively. The purpose of this study was to quantitate DHA and DHB in human lens proteins as a function of age and cataract status. Methods: Human lenses of various ages were divided into five donor groups: transparent lenses (18-22-year-old, 48-64-year-old, and 70-93-year-old) and cataractous human lenses of two age groups (48-64-year-old lenses, and 70-93-year-old lenses) and were subjected to proteomic analysis. Relative DHA and DHB peptide levels were quantified and compared to their non-modified peptide counterparts. Results: For most lens proteins containing DHA or DHB, higher amounts of DHA- and DHB-modified peptides were detected in aged and cataractous lenses. DHA-containing peptides were classified into three groups based on abundance changes with age and cataract: those that (1) increased only in age-related nuclear cataract (ARNC), (2) increased in aged and cataractous lenses, and (3) decreased in aged lenses and ARNC. There was no indication that DHA or DHB levels were dependent on lens region. In most donor groups, proteins with DHA and DHB were more likely to be found among urea-insoluble proteins rather than among water- or urea-soluble proteins. Discussion: DHA and DHB formation may induce structural effects that make proteins less soluble in water that leads to age-related protein insolubility and possibly aggregation and light scattering.

13.
Cells ; 11(24)2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36552806

RESUMO

Age-related protein truncation is a common process in long-lived proteins such as proteins found in the ocular lens. Major truncation products have been reported for soluble and membrane proteins of the lens, including small peptides that can accelerate protein aggregation. However, the spatial localization of age-related protein fragments in the lens has received only limited study. Imaging mass spectrometry (IMS) is an ideal tool for examining the spatial localization of protein products in tissues. In this study we used IMS to determine the spatial localization of small crystallin fragments in aged and cataractous lenses. Consistent with previous reports, the pro-aggregatory αA-crystallin 66-80 peptide as well as αA-crystallin 67-80 and γS-crystallin 167-178 were detected in normal lenses, but found to be increased in nuclear cataract regions. In addition, a series of γS-crystallin C-terminal peptides were observed to be mainly localized to cataractous regions and barely detected in transparent lenses. Other peptides, including abundant αA3-crystallin peptides were present in both normal and cataract lenses. The functional properties of these crystallin peptides remain unstudied; however, their cataract-specific localization suggests further studies are warranted.


Assuntos
Catarata , Cristalinas , Cristalino , Humanos , Idoso , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Catarata/metabolismo , Cristalino/metabolismo , Peptídeos/metabolismo , Cristalinas/metabolismo
14.
JCI Insight ; 7(12)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35579952

RESUMO

Macrophages play a crucial role in the inflammatory response to the human stomach pathogen Helicobacter pylori, which infects half of the world's population and causes gastric cancer. Recent studies have highlighted the importance of macrophage immunometabolism in their activation state and function. We have demonstrated that the cysteine-producing enzyme cystathionine γ-lyase (CTH) is upregulated in humans and mice with H. pylori infection. Here, we show that induction of CTH in macrophages by H. pylori promoted persistent inflammation. Cth-/- mice had reduced macrophage and T cell activation in H. pylori-infected tissues, an altered metabolome, and decreased enrichment of immune-associated gene networks, culminating in decreased H. pylori-induced gastritis. CTH is downstream of the proposed antiinflammatory molecule, S-adenosylmethionine (SAM). Whereas Cth-/- mice exhibited gastric SAM accumulation, WT mice treated with SAM did not display protection against H. pylori-induced inflammation. Instead, we demonstrated that Cth-deficient macrophages exhibited alterations in the proteome, decreased NF-κB activation, diminished expression of macrophage activation markers, and impaired oxidative phosphorylation and glycolysis. Thus, through altering cellular respiration, CTH is a key enhancer of macrophage activation, contributing to a pathogenic inflammatory response that is the universal precursor for the development of H. pylori-induced gastric disease.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos
15.
Sci Adv ; 8(13): eabm0314, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35353580

RESUMO

Replication-coupled DNA repair and damage tolerance mechanisms overcome replication stress challenges and complete DNA synthesis. These pathways include fork reversal, translesion synthesis, and repriming by specialized polymerases such as PRIMPOL. Here, we investigated how these pathways are used and regulated in response to varying replication stresses. Blocking lagging-strand priming using a POLα inhibitor slows both leading- and lagging-strand synthesis due in part to RAD51-, HLTF-, and ZRANB3-mediated, but SMARCAL1-independent, fork reversal. ATR is activated, but CHK1 signaling is dampened compared to stalling both the leading and lagging strands with hydroxyurea. Increasing CHK1 activation by overexpressing CLASPIN in POLα-inhibited cells promotes replication elongation through PRIMPOL-dependent repriming. CHK1 phosphorylates PRIMPOL to promote repriming irrespective of the type of replication stress, and this phosphorylation is important for cellular resistance to DNA damage. However, PRIMPOL activation comes at the expense of single-strand gap formation, and constitutive PRIMPOL activity results in reduced cell fitness.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA , Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/genética , Fosforilação
16.
Kidney Cancer J ; 6(3): 179-193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684483

RESUMO

BACKGROUND: SET domain-containing protein 2 (SETD2) is commonly mutated in renal cell carcinoma. SETD2 methylates histone H3 as well as a growing list of non-histone proteins. OBJECTIVE: Initially, we sought to explore SETD2-dependent changes in lysine methylation of proteins in proximal renal tubule cells. Subsequently, we focused on changes in lysine methylation of the translation elongation factor eEF1A1. METHODS: To accomplish these objectives, we initially performed a systems-wide analysis of protein lysine-methylation and expression in wild type (WT) and SETD2-knock out (KO) kidney cells and later focused our studies on eEF1A1 as well as the expression of lysine methyltransferases that regulate its lysine methylation. RESULTS: We observed decreased lysine methylation of the translation elongation factor eEF1A1. EEF1AKMT2 and EEF1AKMT3 are known to methylate eEF1A1, and we show here that their expression is dependent on SET-domain function of SETD2. Globally, we observe differential expression of hundreds of proteins in WT versus SETD2-KO cells, including increased expression of many involved in protein translation. Finally, we observe decreased progression free survival and loss of EEF1AKMT2 gene expression in SETD2-mutated tumors predicted to have loss of function of the SET domain. CONCLUSION: Overall, these data suggest that SETD2-mutated ccRCC, via loss of enzymatic function of the SET domain, displays dysregulation of protein translation as a potentially important component of the transformed phenotype.

17.
Nat Cell Biol ; 23(12): 1240-1254, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887515

RESUMO

Extracellular vesicles and exomere nanoparticles are under intense investigation as sources of clinically relevant cargo. Here we report the discovery of a distinct extracellular nanoparticle, termed supermere. Supermeres are morphologically distinct from exomeres and display a markedly greater uptake in vivo compared with small extracellular vesicles and exomeres. The protein and RNA composition of supermeres differs from small extracellular vesicles and exomeres. Supermeres are highly enriched with cargo involved in multiple cancers (glycolytic enzymes, TGFBI, miR-1246, MET, GPC1 and AGO2), Alzheimer's disease (APP) and cardiovascular disease (ACE2, ACE and PCSK9). The majority of extracellular RNA is associated with supermeres rather than small extracellular vesicles and exomeres. Cancer-derived supermeres increase lactate secretion, transfer cetuximab resistance and decrease hepatic lipids and glycogen in vivo. This study identifies a distinct functional nanoparticle replete with potential circulating biomarkers and therapeutic targets for a host of human diseases.


Assuntos
Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Nanopartículas/metabolismo , Doença de Alzheimer/patologia , Enzima de Conversão de Angiotensina 2/metabolismo , Transporte Biológico/fisiologia , Biomarcadores/metabolismo , COVID-19/patologia , Doenças Cardiovasculares/patologia , Comunicação Celular/fisiologia , Linhagem Celular Tumoral , Células HeLa , Humanos , Ácido Láctico/metabolismo , MicroRNAs/genética , Nanopartículas/classificação , Neoplasias/patologia , Microambiente Tumoral
18.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502121

RESUMO

Sjögren's syndrome (SS) is an exocrinopathy characterized by the hypofunction of salivary glands (SGs). Aquaporin-5 (AQP5); a water channel involved in saliva formation; is aberrantly distributed in SS SG acini and contributes to glandular dysfunction. We aimed to investigate the role of ezrin in AQP5 mislocalization in SS SGs. The AQP5-ezrin interaction was assessed by immunoprecipitation and proteome analysis and by proximity ligation assay in immortalized human SG cells. We demonstrated, for the first time, an interaction between ezrin and AQP5. A model of the complex was derived by computer modeling and in silico docking; suggesting that AQP5 interacts with the ezrin FERM-domain via its C-terminus. The interaction was also investigated in human minor salivary gland (hMSG) acini from SS patients (SICCA-SS); showing that AQP5-ezrin complexes were absent or mislocalized to the basolateral side of SG acini rather than the apical region compared to controls (SICCA-NS). Furthermore, in SICCA-SS hMSG acinar cells, ezrin immunoreactivity was decreased at the acinar apical region and higher at basal or lateral regions, accounting for altered AQP5-ezrin co-localization. Our data reveal that AQP5-ezrin interactions in human SGs could be involved in the regulation of AQP5 trafficking and may contribute to AQP5-altered localization in SS patients.


Assuntos
Aquaporina 5/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Glândulas Salivares/metabolismo , Síndrome de Sjogren/genética , Síndrome de Sjogren/metabolismo , Sequência de Aminoácidos , Aquaporina 5/química , Proteínas de Transporte , Proteínas do Citoesqueleto/química , Humanos , Modelos Moleculares , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transporte Proteico , Síndrome de Sjogren/patologia , Relação Estrutura-Atividade
19.
Cells ; 10(8)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34440877

RESUMO

Saliva secretion requires effective translocation of aquaporin 5 (AQP5) water channel to the salivary glands (SGs) acinar apical membrane. Patients with Sjögren's syndrome (SS) display abnormal AQP5 localization within acinar cells from SGs that correlate with sicca manifestation and glands hypofunction. Several proteins such as Prolactin-inducible protein (PIP) may regulate AQP5 trafficking as observed in lacrimal glands from mice. However, the role of the AQP5-PIP complex remains poorly understood. In the present study, we show that PIP interacts with AQP5 in vitro and in mice as well as in human SGs and that PIP misexpression correlates with an altered AQP5 distribution at the acinar apical membrane in PIP knockout mice and SS hMSG. Furthermore, our data show that the protein-protein interaction involves the AQP5 C-terminus and the N-terminal of PIP (one molecule of PIP per AQP5 tetramer). In conclusion, our findings highlight for the first time the role of PIP as a protein controlling AQP5 localization in human salivary glands but extend beyond due to the PIP-AQP5 interaction described in lung and breast cancers.


Assuntos
Aquaporina 5/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Glândulas Salivares/metabolismo , Síndrome de Sjogren/metabolismo , Células Acinares/metabolismo , Animais , Aquaporina 5/química , Aquaporina 5/genética , Sítios de Ligação , Linhagem Celular , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Ligação Proteica , Síndrome de Sjogren/genética
20.
J Cell Sci ; 134(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34406412

RESUMO

In polarized MDCK cells, disruption of the tyrosine-based YXXΦ basolateral trafficking motif (Y156A) in the epidermal growth factor receptor (EGFR) ligand epiregulin (EREG), results in its apical mistrafficking and transformation in vivo. However, the mechanisms underlying these dramatic effects are unknown. Using a doxycycline-inducible system in 3D Matrigel cultures, we now show that induction of Y156A EREG in fully formed MDCK cysts results in direct and complete delivery of mutant EREG to the apical cell surface. Within 3 days of induction, ectopic lumens were detected in mutant, but not wild-type, EREG-expressing cysts. Of note, these structures resembled histological features found in subcutaneous xenografts of mutant EREG-expressing MDCK cells. These ectopic lumens formed de novo rather than budding from the central lumen and depended on metalloprotease-mediated cleavage of EREG and subsequent EGFR activity. Moreover, the most frequent EREG mutation in human cancer (R147stop) resulted in its apical mistrafficking in engineered MDCK cells. Thus, induction of EREG apical mistrafficking is sufficient to disrupt selective aspects of polarity of a preformed polarized epithelium. This article has an associated First Person interview with the first author of the paper.


Assuntos
Receptores ErbB , Transdução de Sinais , Epirregulina/genética , Epirregulina/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA