Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 890(1): 189-91, 2001 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-11164783

RESUMO

Extracellular glutamate levels were measured by microdialysis in the prefrontal cortex (PFC) of anaesthetised rats in response to a short, experimenter-provoked mechanical movement of the animal head. Movement caused significant, nerve impulse-independent elevations of glutamate levels (maximum increase, 300+/-30% of baseline). This study reveals a possible artifact in the measurement of extracellular glutamate concentrations by microdialysis and suggests that, in awake animals, treatments associated with stimulation of motor activity can cause non-specific efflux of glutamate in the PFC.


Assuntos
Artefatos , Ácido Glutâmico/metabolismo , Microdiálise/normas , Movimento/fisiologia , Córtex Pré-Frontal/metabolismo , Anestesia , Animais , Nível de Alerta/fisiologia , Espaço Extracelular/metabolismo , Masculino , Atividade Motora/fisiologia , Ratos , Ratos Sprague-Dawley
2.
Behav Brain Res ; 108(2): 127-32, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10701656

RESUMO

It has been hypothesised that rat lines genetically selected for their alcohol preference consume large amounts of ethanol because they have a low 5-HT content. Since brain tryptophan (TRP) availability controls the rate at which neurons synthesise and release serotonin (5-HT), we assessed whether the administration of a TRP-supplemented or TRP-free diet for 3 consecutive days influenced alcohol intake in alcohol-preferring and non-preferring sP and sNP rats, respectively. In the same animals extracellular 5-HT concentration was monitored by microdialysis in the frontal cortex. A TRP-free diet progressively and markedly decreased cortical extracellular 5-HT in sP and sNP rats during the treatment period with respect to a balanced diet. However, the TRP-free diet failed to modify alcohol consumption and preference in sP and sNP rats. The TRP-supplemented diet also failed to alter the intake of alcohol in either group of rats. Therefore, these results do not support a specific role of 5-HT transmission in ethanol intake and preference in sP and sNP rats.


Assuntos
Depressores do Sistema Nervoso Central/metabolismo , Etanol/metabolismo , Preferências Alimentares/fisiologia , Lobo Frontal/metabolismo , Neurotransmissores/metabolismo , Serotonina/metabolismo , Triptofano/metabolismo , Animais , Comportamento Consumatório , Masculino , Microdiálise , Neurotransmissores/líquido cefalorraquidiano , Ratos , Ratos Endogâmicos , Serotonina/líquido cefalorraquidiano , Triptofano/administração & dosagem
3.
Br J Pharmacol ; 129(1): 156-62, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10694215

RESUMO

The effect of NMDA on the motility of the rat portal vein was studied in an isolated preparation. NMDA induced a concentration-dependent (10(-7) - 10(-4) M) increase of the contraction frequency (maximum increase, 148+/-6% of control at NMDA 10(-4) M). The NMDA-induced excitatory response was prevented by the competitive NMDA receptor antagonists (+/-)-2-Amino-5-phosphonopentanoic acid (AP-5, 5x10(-4) M) or (RS)-3-(2-carboxypiperazine-4-yl) propyl-1-phosphonic acid (CPP, 10(-4) M). Tetrodotoxin (TTX, 10(-6) M) or atropine (10(-4) M) abolished the NMDA-induced increase of the portal vein motility and reversed the excitatory effect to a concentration-dependent inhibition (maximum inhibition, 52+/-8 and 29+/-7% of controls, respectively, at NMDA 10(-3) M). Removal of the endothelium abolished the NMDA-induced inhibitory response. Sodium nitroprusside concentration-dependently (10(-7) - 10(-5) M) inhibited the portal vein motility, while L-N(G)-nitro-arginine methyl ester (L-NAME, 10(-4) M) reversed the inhibitory effect of NMDA (in the presence of TTX), restoring the portal vein spontaneous activity to control values. These results show that NMDA modulates the portal vein motility in a biphasic manner: via indirect activation, through prejunctional NMDA receptors presumably located on intrinsic excitatory neuronal afferences, or via direct inhibition, through endothelial NMDA receptors activating the nitric oxide pathway. Overall these findings support the hypothesis of the existence of a peripheral glutamatergic innervation modulating the contractile activity of the rat portal vein. British Journal of Pharmacology (2000) 129, 156 - 162


Assuntos
Agonistas de Aminoácidos Excitatórios/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , N-Metilaspartato/farmacologia , Veia Porta/efeitos dos fármacos , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Atropina/farmacologia , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Técnicas In Vitro , Masculino , Antagonistas Muscarínicos/farmacologia , Contração Muscular/efeitos dos fármacos , N-Metilaspartato/antagonistas & inibidores , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III , Nitroprussiato/farmacologia , Piperazinas/farmacologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tetrodotoxina/farmacologia , Vasodilatadores/farmacologia
4.
Neuropharmacology ; 38(9): 1361-9, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10471090

RESUMO

Withdrawal from chronic ethanol intoxication is associated with a reduction of dopamine neurotransmission. However, the mechanisms of dopamine depletion, a putative neurochemical correlate of the dysphoric symptomatology, are not yet understood. To assess the role of L-type calcium channels in the inhibition of the dopaminergic system in the withdrawal state, the effects of the dihydropyridine calcium channel antagonist nimodipine on the extracellular levels of dopamine were studied in the nucleus accumbens shell of awake rats 10 h after withdrawal from chronic ethanol intoxication. In control, chronic sucrose-withdrawn rats, nimodipine did not change extracellular dopamine levels. However, in ethanol-withdrawn rats nimodipine (5 or 10 mg/kg s.c.) increased extracellular dopamine to 136 +/- 16 and 305 +/- 19% of pre-administration values, respectively, the latter dose elevating levels above those of controls. The elevations of extracellular DA by nimodipine (10 mg/kg) were associated with a significant reduction (-17%) of the overall behavioural score of the withdrawal symptomatology, as evaluated for 11 behavioural items. Significant reductions of the score for convulsions (-47%) and, to a lesser extent, for catatonia (-30%) and tremors (-15%) contributed to the overall effect. It is suggested that overactivity of L-type calcium channels is involved in the mechanisms of dopamine depletion as well as in certain behavioural/neurological signs associated with ethanol withdrawal. By restoring depleted dopamine levels, dihydropyridines might ameliorate the dysphoric symptoms of ethanol abstinence.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Dopamina/metabolismo , Etanol/efeitos adversos , Nimodipina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/metabolismo , Alcoolismo/metabolismo , Análise de Variância , Animais , Masculino , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Neuroscience ; 93(3): 1135-40, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10473277

RESUMO

Ethanol withdrawal is a physiopathological state associated with increased number and function of N-methyl-D-aspartate glutamate receptors. We assessed the effect of N-methyl-D-aspartate receptor stimulation on the extracellular levels of glutamate in vivo by the focal application of N-methyl-D-aspartate in the striatum of dependent rats following withdrawal from chronic treatment with ethanol. In control, chronic sucrose-treated rats, 800 microM N-methyl-D-aspartate increased glutamate levels to 268% of baseline values. In ethanol-withdrawn animals, 12 h after interruption of the chronic treatment, the application of N-methyl-D-aspartate increased glutamate levels to 598% of baseline values. In ethanol-intoxicated rats N-methyl-D-aspartate was ineffective. Concentration-response curves showed that in ethanol withdrawn animals N-methyl-D-aspartate was five-fold more potent than in controls. In withdrawn animals, the non-competitive N-methyl-D-aspartate receptor antagonist dizocilpine (1.0 mg/kg i.p.) or ethanol (5 g/kg i.g.) markedly reduced the N-methyl-D-aspartate-induced increase in glutamate levels. These results are consistent with the up-regulation of N-methyl-D-aspartate receptors by chronic ethanol and add biochemical evidence for the presence of N-methyl-D-aspartate receptors facilitating glutamate release through a positive feedback mechanism. The glutamate-induced, N-methyl-D-aspartate receptor-mediated elevations of extracellular glutamate may constitute a neurochemical substrate for the neuropathological alterations associated with alcoholism.


Assuntos
Corpo Estriado/efeitos dos fármacos , Etanol/efeitos adversos , Agonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/fisiologia , N-Metilaspartato/farmacologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Corpo Estriado/fisiopatologia , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Espaço Extracelular/metabolismo , Retroalimentação , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/biossíntese , Receptores de N-Metil-D-Aspartato/fisiologia , Regulação para Cima/efeitos dos fármacos
6.
Behav Brain Res ; 103(1): 71-6, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10475166

RESUMO

Long-term ethanol consumption in humans and laboratory animals is associated with morphological and functional alterations of brain structures involved in cognitive processes. In the present experiments, we assessed whether voluntary long-term consumption of ethanol by alcohol-preferring (sP) rats under free choice condition with water (also) caused alterations in memory performance and hippocampal acetylcholine (ACh) release in vivo. A group of sP rats were offered a 10% v/v ethanol solution in a free choice with water for 36 weeks; controls had only tap water available. After withdrawal of ethanol, rats were tested in one trial passive avoidance test and thereafter were trained in a food-reinforced radial arm maze task for 12 days. One day after the last session in the radial-arm maze, rats were implanted with a microdialysis probe in the dorsal hippocampus and dialysate concentrations of ACh were measured. No significant differences were observed between sP drinking and control rats in retention latencies in the passive avoidance test, in radial arm-maze performance or in basal levels of hippocampal ACh release. These results show that long-term ethanol consumption by sP rats is not associated with cognitive impairments or with alterations in the hippocampal cholinergic function. To the extent that chronic ethanol intoxication can be considered a causal factor in the development of memory and neurochemical alterations, these results suggest that sP rats self-regulate ethanol consumption so as to avoid intoxication. These findings may challenge the notion that sP rat lines can be considered a valid model of human alcoholism.


Assuntos
Acetilcolina/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/psicologia , Aprendizagem da Esquiva/fisiologia , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Percepção Espacial/fisiologia , Consumo de Bebidas Alcoólicas/genética , Animais , Peso Corporal/fisiologia , Masculino , Microdiálise , Ratos
7.
Prog Neurobiol ; 56(4): 385-431, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9775400

RESUMO

In this review first we evaluate evidence on the role of the neurobiological alterations induced by chronic ethanol consumption in the development of ethanol tolerance, dependence and withdrawal. Secondly, we describe the neuropathological consequences of chronic ethanol on cognitive functions and on brain structures. Chronic alcohol consumption can induce alterations in the function and morphology of most if not all brain systems and structures. While tolerance mechanisms are unlikely to contribute to the neuroadaptive changes associated with ethanol dependence, it is otherwise clear that repeated high, intoxicating doses of ethanol trigger those neuroadaptive processes that lead to dependence and contribute to the manifestation of the abstinence syndrome upon withdrawal. An unbalance between inhibitory and excitatory neurotransmission is the most prominent neuroadaptive process induced by chronic ethanol consumption. Due to the diffuse glutamatergic innervation to all brain structures, the neuroadaptive alterations in excitatory neurotransmission can affect the function of most if not all of neurotransmitter systems. The expression of the withdrawal syndrome is the major causal factor for the onset and development of the neuropathological alterations. This suggests a link between the neuroadaptive mechanisms underlying the development of ethanol dependence and those underlying the functional and structural alterations induced by chronic ethanol. In animals and humans, specific alterations occur in the function and morphology of the diencephalon, medial temporal lobe structures, basal forebrain, frontal cortex and cerebellum, while other subcortical structures, such as the caudate nucleus, seem to be relatively spared. The neuropathological alterations in the function of mesencephalic and cortical structures are correlated with impairments in cognitive processes. In the brain of alcoholics, the prefrontal cortex and its subterritories seem particularly vulnerable to chronic ethanol, whether Korsakoff's syndrome is present or not. Due to the role of these cortical structures in cognitive functions and in the control of motivated behavior, functional alterations in this brain area may play an important role in the onset and development of alcoholism.


Assuntos
Transtornos Relacionados ao Uso de Álcool/fisiopatologia , Alcoolismo/complicações , Etanol/efeitos adversos , Degeneração Neural/induzido quimicamente , Doenças do Sistema Nervoso/induzido quimicamente , Acetilcolina/fisiologia , Adaptação Fisiológica , Transtorno Amnésico Alcoólico/etiologia , Consumo de Bebidas Alcoólicas/efeitos adversos , Animais , Apoptose , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Condicionamento Clássico , Depressão/induzido quimicamente , Depressão/fisiopatologia , Modelos Animais de Doenças , Dopamina/fisiologia , Tolerância a Medicamentos , Etanol/toxicidade , Humanos , Degeneração Neural/fisiopatologia , Óxido Nítrico/fisiologia , Estresse Oxidativo , Receptores de N-Metil-D-Aspartato/fisiologia , Síndrome de Abstinência a Substâncias/etiologia , Deficiência de Tiamina/induzido quimicamente , Deficiência de Tiamina/complicações , Ácido gama-Aminobutírico/fisiologia
8.
J Neurochem ; 70(4): 1503-12, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9523567

RESUMO

Electrical stimulation of the medial prefrontal cortex caused glutamate release in the ventral tegmental area (VTA) of freely moving animals. Cathodal stimulation was given through monopolar electrodes in 0.1-ms pulses at an intensity of 300 microA and frequencies of 4-120 Hz. Glutamate was measured in 10-min perfusate samples by HPLC coupled with fluorescence detection following precolumn derivatization with o-phthaldialdehyde/beta-mercaptoethanol. The stimulation-induced glutamate release was frequency dependent and was blocked by the infusion of the sodium channel blocker tetrodotoxin (10 microM) through the dialysis probe. The stimulation also induced bilateral Fos-like immunoreactivity in ventral tegmental neurons, with a significantly greater number of Fos-positive cells on the stimulated side. These findings add to a growing body of evidence suggesting that the medial prefrontal cortex regulates dopamine release in the nucleus accumbens via its projection to dopamine cell bodies in the VTA.


Assuntos
Espaço Extracelular/metabolismo , Ácido Glutâmico/metabolismo , Córtex Pré-Frontal/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estilbamidinas , Tegmento Mesencefálico/metabolismo , Animais , Estimulação Elétrica , Corantes Fluorescentes , Ratos , Tegmento Mesencefálico/efeitos dos fármacos , Tetrodotoxina/farmacologia
9.
Eur J Pharmacol ; 283(1-3): 177-83, 1995 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-7498307

RESUMO

Extracellular glutamate was measured by microdialysis in the striatum of ethanol-dependent, freely behaving rats following withdrawal from chronic ethanol treatment. Within 12 h from withdrawal, extracellular glutamate rose to 255% of that in control, chronic sucrose-treated rats. Glutamate output remained elevated for the subsequent 12 h and returned to control levels within 36 h from the interruption of the treatment. The changes in glutamate were time-locked to the overt physical signs of withdrawal. In 12-h ethanol-withdrawn rats an ethanol challenge suppressed the withdrawal signs and reduced the extracellular glutamate. The NMDA receptor antagonist, dizocilpine, reduced both the physical signs of withdrawal and glutamate output. In contrast, diazepam reduced the withdrawal signs but failed to change the glutamate levels. These findings suggest that the increased extraneuronal glutamate reflects overactivity of excitatory neurotransmission during withdrawal. Furthermore, they provide a biochemical rationale for the use of NMDA receptor antagonists and ethanol itself in the treatment of ethanol withdrawal syndrome.


Assuntos
Corpo Estriado/metabolismo , Etanol/farmacologia , Ácido Glutâmico/metabolismo , Síndrome de Abstinência a Substâncias , Animais , Diazepam/farmacologia , Maleato de Dizocilpina/farmacologia , Masculino , Microdiálise , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
10.
Eur J Pharmacol ; 289(1): 97-101, 1995 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-7781717

RESUMO

Dizocilpine administration enhances dopamine metabolism in the rat striatum, nucleus accumbens, olfactory tubercle, and prefrontal cortex. Concomitant with increased metabolism is enhanced tyrosine hydroxylase and aromatic L-amino acid decarboxylase activities in the striatum and increased mRNA for the two enzymes in the midbrain. Activation of dopaminergic neurons may, in part, explain increased locomotor activity in normal animals and the ability of dizocilpine to potentiate the antiparkinsonian action of L-3,4-dihydroxyphenylalanine in an animal model.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/efeitos dos fármacos , Corpo Estriado/enzimologia , Maleato de Dizocilpina/farmacologia , Tirosina 3-Mono-Oxigenase/efeitos dos fármacos , Análise de Variância , Animais , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Northern Blotting , Encéfalo/enzimologia , Masculino , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/metabolismo
11.
Eur J Pharmacol ; 242(3): 313-5, 1993 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-8281997

RESUMO

Exposure of rate to the behavioral despair test (an animal model of depression) for 40 min resulted in a long-lasting depletion of mesolimbic dopamine output to about 40% of baseline values. The decrease in extracellular dopamine was partially prevented by chronic pretreatment with imipramine (20 mg/kg per day i.p. for 21 days). The results suggest that a fall in mesolimbic dopamine output may be associated with depressive states and indicate that changes in the functional status of the dopamine system contribute to the mechanism of action of imipramine.


Assuntos
Corpo Estriado/efeitos dos fármacos , Depressão/tratamento farmacológico , Dopamina/metabolismo , Imipramina/uso terapêutico , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Corpo Estriado/metabolismo , Depressão/metabolismo , Modelos Animais de Doenças , Ácido Homovanílico/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
12.
Proc Natl Acad Sci U S A ; 90(17): 7966-9, 1993 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-8367449

RESUMO

Activity of the mesolimbic dopaminergic system was investigated in rats withdrawn from chronic ethanol administration by single-cell extracellular recordings from dopaminergic neurons of the ventrotegmental area, coupled with antidromic identification from the nucleus accumbens, and by microdialysis-technique experiments in the nucleus accumbens. Spontaneous firing rates, spikes per burst, and absolute burst firing but not the number of spontaneously active neurons were found drastically reduced; whereas absolute and relative refractory periods increased in rats withdrawn from chronic ethanol treatment as compared with chronic saline-treated controls. Consistently, dopamine outflow in the nucleus accumbens and its acid metabolites were reduced after abruptly stopping chronic ethanol administration. All these changes, as well as ethanol-withdrawal behavioral signs, were reversed by ethanol administration. This reversal suggests that the abrupt cessation of chronic ethanol administration plays a causal role in the reduction of mesolimbic dopaminergic activity seen in the ethanol-withdrawal syndrome. Results indicate that during the ethanol-withdrawal syndrome the mesolimbic dopaminergic system is tonically reduced in activity, as indexed by electrophysiological and biochemical criteria. Considering the role of the mesolimbic dopaminergic system in the reinforcing properties of ethanol, the depressed activity of this system during the ethanol-withdrawal syndrome may be relevant to the dysphoric state associated with ethanol withdrawal in humans.


Assuntos
Delirium por Abstinência Alcoólica/fisiopatologia , Intoxicação Alcoólica/fisiopatologia , Dopamina/metabolismo , Etanol/toxicidade , Neurônios/fisiologia , Núcleo Accumbens/fisiopatologia , Tegmento Mesencefálico/fisiopatologia , Ácido 3,4-Di-Hidroxifenilacético/isolamento & purificação , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Potenciais de Ação/efeitos dos fármacos , Delirium por Abstinência Alcoólica/metabolismo , Análise de Variância , Animais , Dopamina/isolamento & purificação , Ácido Homovanílico/isolamento & purificação , Ácido Homovanílico/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Tegmento Mesencefálico/efeitos dos fármacos , Tegmento Mesencefálico/metabolismo , Fatores de Tempo
13.
Neurosci Lett ; 152(1-2): 133-6, 1993 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-8100051

RESUMO

The administration of ethanol (2 g/kg, i.p.) or of the non-competitive antagonist(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cycloepten-5,1 0-imine maleate (MK-801; 1 mg/kg, i.p.) induced a decrease in the extracellular concentrations of glutamate, as studied by microdialysis in the striatum of awake rats. Moreover, ethanol and MK-801 completely prevented the increase in extraneuronal glutamate concentration induced by the focal application of N-methyl-D-aspartate (NMDA). The present results suggest that ethanol suppresses glutamate release through an inhibition of NMDA glutamate receptors in the rat striatum.


Assuntos
Corpo Estriado/efeitos dos fármacos , Etanol/farmacologia , Glutamatos/metabolismo , N-Metilaspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Corpo Estriado/metabolismo , Maleato de Dizocilpina/farmacologia , Ácido Glutâmico , Masculino , N-Metilaspartato/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia
14.
Brain Res ; 609(1-2): 316-20, 1993 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-8508313

RESUMO

The changes in extracellular concentrations of noradrenaline (NA) in the prefrontal cortex of morphine-dependent rats were studied by microdialysis following an acute morphine challenge and during naloxone-precipitated withdrawal. Animals were implanted with morphine- or placebo-containing pellets for 5 days. In control rats a challenge dose of morphine (5 mg/kg s.c.) induced a maximum decrease in NA output of about 45% of pre-drug levels. In contrast, morphine challenge had no effect on extraneuronal NA concentrations in morphine-implanted animals. In control animals, naloxone (2 mg/kg i.p.) produced no behavioral effect nor changed NA levels. However, in morphine-dependent animals naloxone suddenly increased extraneuronal NA by 175% of baseline dialysate levels in the first sample after the injection and precipitated a morphine-withdrawal symptomatology that paralleled the changes in NA output. Thus, chronic morphine treatment in rats results in the development of tolerance to the acute inhibitory effect of morphine on extraneuronal NA and is associated with a stimulation of prefrontocortical NA output during naloxone-precipitated withdrawal.


Assuntos
Dependência de Morfina/metabolismo , Norepinefrina/metabolismo , Córtex Pré-Frontal/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Diálise , Tolerância a Medicamentos , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Masculino , Naloxona/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
15.
Nature ; 361(6413): 578, 1993 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-8437619
16.
Eur J Pharmacol ; 231(2): 203-7, 1993 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-8453975

RESUMO

The effect of ethanol challenge on the extracellular concentrations of dopamine, 3,4-dihydroxy-phenylacetic acid and homovanillic acid was studied in the ventral striatum of rats repeatedly treated with ethanol. Ethanol-treated animals (1 g/kg i.p. twice a day for 12 days) developed marked tolerance to the behavioral signs of ethanol intoxication when challenged with ethanol (2 g/kg i.p.). However, in ethanol-treated animals the increased output of dopamine and metabolites after ethanol challenge (1 or 2 g/kg i.p.) was not statistically different from that observed in saline-treated rats. These results indicate that tolerance does not develop to the ethanol-induced stimulation of dopamine release and support the hypothesis that activation of the mesolimbic dopamine system contributes to the reinforcing properties of ethanol.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Etanol/farmacologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Diálise , Tolerância a Medicamentos , Ácido Homovanílico/metabolismo , Masculino , Terminações Nervosas/efeitos dos fármacos , Terminações Nervosas/metabolismo , Ratos , Ratos Sprague-Dawley
17.
Alcohol Alcohol Suppl ; 2: 315-9, 1993.
Artigo em Inglês | MEDLINE | ID: mdl-7748317

RESUMO

Ethanol (EtOH) administration is considered to elicit its reinforcing properties by stimulating dopaminergic (DA) transmission in the mesolimbic system. Accordingly, (EtOH) activates dopamine neuronal firing in the Ventro-Tegmental Area (VTA) and DA output in the nucleus accumbens. Concomitantly, EtOH reduces the firing rate of Pars Reticulata (PR) neurons which are thought to exert an inhibitory control over DA neurons. Further, chronic ingestion of EtOH produces tolerance to its sedative effects as to the depressant effect on PR neurons but no tolerance to the DA stimulating action. Moreover the NMDA antagonist MK-801, but not SL-820715, stimulates DA firing, suggesting that this effect is not a general characteristic of NMDA receptor antagonists and questioning the possibility that NMDA-receptor blockade may underlie EtOh-induced activation of DA-ergic transmission. The results indicate that activation of the mesolimbic DA tract is essential in the rewarding properties of EtOH and that neither GABA-ergic inhibition nor NMDA-receptor blockade by EtOH, are causally linked to the EtOH-induced activation of DA-ergic transmission.


Assuntos
Dopamina/fisiologia , Etanol/toxicidade , Ácido Glutâmico/fisiologia , Recompensa , Ácido gama-Aminobutírico/fisiologia , Alcoolismo/etiologia , Alcoolismo/fisiopatologia , Alcoolismo/psicologia , Animais , Terapia Aversiva , Maleato de Dizocilpina/farmacologia , Eletrofisiologia , Sistema Límbico/efeitos dos fármacos , Sistema Límbico/fisiopatologia , Masculino , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
18.
Eur J Pharmacol ; 221(2-3): 227-34, 1992 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-1426002

RESUMO

Withdrawal of rats from chronic ethanol, morphine, cocaine and amphetamine resulted in a marked reduction in extracellular dopamine (DA) concentration in the ventral striatum as measured by microdialysis. Following ethanol and naloxone-precipitated morphine withdrawal, the time course of DA reduction paralleled that of the withdrawal symptomatology. On the other hand, following discontinuation of chronic cocaine, DA reduction was delayed by over 24 h but persisted for several days. After amphetamine withdrawal the fall in DA occurred more rapidly but the reduction also persisted for several days. The administration of the NMDA receptor antagonist, MK-801, to rats withdrawn from chronic ethanol, morphine or amphetamine, but not from chronic cocaine, readily reversed the fall in DA output. The reduction in extracellular DA during ethanol withdrawal was also reversed by SL 82.0715, another NMDA receptor antagonist.


Assuntos
Anfetamina/efeitos adversos , Cocaína/efeitos adversos , Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Etanol/efeitos adversos , Morfina/efeitos adversos , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Corpo Estriado/metabolismo , Maleato de Dizocilpina/farmacologia , Masculino , Naloxona/farmacologia , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/fisiologia
19.
Eur J Pharmacol ; 221(2-3): 403-4, 1992 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-1426019

RESUMO

The electrophysiological activity of mesoaccumbens dopaminergic neurons was monitored during the ethanol-withdrawal syndrome in ethanol-dependent and in control rats. Spontaneous firing was reduced by about half in ethanol-dependent rats as compared to controls. Likewise, the number of spikes/burst was also reduced in ethanol-dependent rats. These results are consistent with the reduction in dopamine release observed during ethanol-withdrawal syndrome and may provide the basis for the aversive effects of the ethanol-withdrawal syndrome.


Assuntos
Etanol/efeitos adversos , Núcleo Accumbens/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/fisiopatologia , Animais , Dopamina/análise , Masculino , Núcleo Accumbens/fisiologia , Ratos , Ratos Sprague-Dawley
20.
Alcohol Alcohol ; 27(5): 477-80, 1992 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-1476551

RESUMO

Ethanol elicited a biphasic effects on the extracellular noradrenaline (NA) concentrations in the rat frontal cortex, as assessed by microdialysis in awake animals. A low dose of ethanol (0.2 g/kg i.p.) raised NA output to about 160% of baseline levels. In contrast, a dose of 2 g/kg inhibited NA output to about 70% of pre-drug levels. These results suggest that the decrease in cortical NA output may reflect the sedative-hypnotic properties of ethanol at high doses, whereas the stimulation of extraneuronal NA may represent a biochemical correlate of the arousal and increased alertness elicited by low doses of ethanol.


Assuntos
Nível de Alerta/efeitos dos fármacos , Etanol/farmacologia , Norepinefrina/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Masculino , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA