Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39064921

RESUMO

Metal matrix composites (MMCs) combine metal with ceramic reinforcement, offering high strength, stiffness, corrosion resistance, and low weight for diverse applications. Al-SiC, a common MMC, consists of an aluminum matrix reinforced with silicon carbide, making it ideal for the aerospace and automotive industries. In this work, molecular dynamics simulations are performed to investigate the mechanical properties of the complex-shaped models of Al-SiC. Three different volume fractions of SiC particles, precisely 10%, 15%, and 25%, are investigated in a composite under uniaxial tensile loading. The tensile behavior of Al-SiC composites is evaluated under two loading directions, considering both cases with and without diffusion effects. The results show that diffusion increases the ultimate tensile strength of the Al-SiC composite, particularly for the 15% SiC volume fraction. Regarding the shape of the SiC particles considered in this research, the strength of the composite varies in different directions. Specifically, the ultimate strength of the Al-SiC composite with 25% SiC reached 11.29 GPa in one direction, and 6.63 GPa in another, demonstrating the material's anisotropic mechanical behavior when diffusion effects are considered. Young's modulus shows negligible change in the presence of diffusion. Furthermore, diffusion improves toughness in Al-SiC composites, resulting in higher values compared to those without diffusion, as evidenced by the 25% SiC volume fraction composite (2.086 GPa) versus 15% (0.863 GPa) and 10% (1.296 GPa) SiC volume fractions.

2.
Molecules ; 29(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474677

RESUMO

This study comprehensively investigates Al2O3's mechanical properties, focusing on fracture toughness, surface energy, Young's modulus, and crack propagation. The density functional theory (DFT) is employed to model the vacancies in Al2O3, providing essential insights into this material's structural stability and defect formation. The DFT simulations reveal a deep understanding of vacancy-related properties and their impact on mechanical behavior. In conjunction with molecular dynamics (MD) simulations, the fracture toughness and crack propagation in Al2O3 are explored, offering valuable information on material strength and durability. The surface energy of Al2O3 is also assessed using DFT, shedding light on its interactions with the surrounding environment. The results of this investigation highlight the significant impact of oxygen vacancies on mechanical characteristics such as ultimate strength and fracture toughness, drawing comparisons with the effects observed in the presence of aluminum vacancies. Additionally, the research underscores the validation of fracture toughness outcomes derived from both DFT and MD simulations, which align well with findings from established experimental studies. Additionally, the research underscores the validation of fracture toughness outcomes derived from DFT and MD simulations, aligning well with findings from established experimental studies. The combination of DFT and MD simulations provides a robust framework for a comprehensive understanding of Al2O3's mechanical properties, with implications for material science and engineering applications.

3.
Materials (Basel) ; 16(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38138716

RESUMO

This paper presents the results of laboratory tests of CFRP (carbon fiber-reinforced polymer) laminates, which allowed the development of numerical material models. The obtained data were used in a further stage to perform numerical simulations of four variants of medical tabletops, differing, among other features, in the shape of the cross-section. Maximum deflections and effort in the composite material were analyzed. The final step was to perform a laboratory test for one of the tabletop versions, the results of which confirmed the correctness of the numerical calculations. This work is aimed at both researchers and designers involved in the practical application of fiber-reinforced polymer matrix composites.

4.
Molecules ; 28(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836599

RESUMO

Modeling metal matrix composites in finite element software requires incorporating a cohesive zone model (CZM) to represent the interface between the constituent materials. The CZM determines the behavior of traction-separation (T-S) in this region. Specifically, when a diffusion zone is formed due to heat treatment, it becomes challenging to determine experimentally the equivalent mechanical properties of the interface. Additionally, understanding the influence of heat treatment and the creation of a diffusion zone on the T-S law is crucial. In this study, the molecular dynamics approach was employed to investigate the effect of the diffusion region formation, resulting from heat treatment, on the T-S law at the interface of a SiC/Al composite in tensile, shear, and mixed-mode loadings. It was found that the formation of a diffusion layer led to an increase in tensile and shear strengths and work of separation compared with the interfaces without heat treatment. However, the elastic and shear moduli were not significantly affected by the creation of the diffusion layer. Moreover, the numerical findings indicated that the shear strength in the diffusion region was higher when compared with the shear strength of the {111} slip plane within the fcc aluminum component of the composite material. Therefore, in the diffusion region, crack propagation did not occur in the pure shear loading case; however, shear sliding was observed at the aluminum atomic layers.

5.
Materials (Basel) ; 16(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687582

RESUMO

Friction stir welding (FSW) is a manufacturing process that many industries have adopted to join metals in a solid state, resulting in unique properties. However, studying aspects like temperature distribution, stress distribution, and material flow experimentally is challenging due to severe plastic deformation in the weld zone. Therefore, numerical methods are utilized to investigate these parameters and gain a better understanding of the FSW process. Numerical models are employed to simulate material flow, temperature distribution, and stress state during welding. This allows for the identification of potential defect-prone zones. This paper presents a comprehensive review of research activities and advancements in numerical analysis techniques specifically designed for friction stir welding, with a focus on their applicability to component manufacturing. The paper begins by examining various types of numerical methods and modeling techniques used in FSW analysis, including finite element analysis, computational fluid dynamics, and other simulation approaches. The advantages and limitations of each method are discussed, providing insights into their suitability for FSW simulations. Furthermore, the paper delves into the crucial variables that play a significant role in the numerical modeling of the FSW process.

6.
Materials (Basel) ; 16(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37374419

RESUMO

The increasing popularity of additive manufacturing technologies in the prototyping and building industry requires the application of novel, improved composite materials. In this paper, we propose the use of a novel 3D printing cement-based composite material with natural, granulated cork, and additional reinforcement using a continuous polyethylene interlayer net combined with polypropylene fibre reinforcement. Our assessment of different physical and mechanical properties of the used materials during the 3D printing process and after curing verified the applicability of the new composite. The composite exhibited orthotropic properties, and the compressive toughness in the direction of layer stacking was lower than that perpendicular to it, by 29.8% without net reinforcement, 42.6% with net reinforcement, and 42.9% with net reinforcement and an additional freeze-thaw test. The use of the polymer net as a continuous reinforcement led to decreased compressive toughness, lowering it on average by 38.5% for the stacking direction and 23.8% perpendicular to the stacking direction. However, the net reinforcement additionally lowered slumping and elephant's foot effects. Moreover, the net reinforcement added residual strength, which allowed for the continuous use of the composite material after the failure of the brittle material. Data obtained during the process can be used for further development and improvement of 3D-printable building materials.

7.
Materials (Basel) ; 16(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37374508

RESUMO

The equivalent characteristics of the materials' interfaces are known to impact the overall mechanical properties of ceramic-metal composites significantly. One technological method that has been suggested is raising the temperature of the liquid metal to improve the weak wettability of ceramic particles with liquid metals. Therefore, as the first step, it is necessary to produce the diffusion zone at the interface by heating the system and maintaining it at a preset temperature to develop the cohesive zone model of the interface using mode I and mode II fracture tests. This study uses the molecular dynamics method to study the interdiffusion at the interface of α-Al2O3/AlSi12. The hexagonal crystal structure of aluminum oxide with the Al- and O-terminated interfaces with AlSi12 are considered. A single diffusion couple is used for each system to determine the average main and cross ternary interdiffusion coefficients. In addition, the effect of temperature and the termination type on the interdiffusion coefficients is examined. The results demonstrate that the thickness of the interdiffusion zone is proportional to the annealing temperature and time, and Al- and O-terminated interfaces exhibit similar interdiffusion properties.

8.
Molecules ; 28(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298818

RESUMO

A density functional theory (DFT) calculation is carried out in this work to investigate the effect of vacancies on the behavior of Al(111)/6H SiC composites. Generally, DFT simulations with appropriate interface models can be an acceptable alternative to experimental methods. We developed two modes for Al/SiC superlattices: C-terminated and Si-terminated interface configurations. C and Si vacancies reduce interfacial adhesion near the interface, while Al vacancies have little effect. Supercells are stretched vertically along the z-direction to obtain tensile strength. Stress-strain diagrams illustrate that the tensile properties of the composite can be improved by the presence of a vacancy, particularly on the SiC side, compared to a composite without a vacancy. Determining the interfacial fracture toughness plays a pivotal role in evaluating the resistance of materials to failure. The fracture toughness of Al/SiC is calculated using the first principal calculations in this paper. Young's modulus (E) and surface energy (Ɣ) is calculated to obtain the fracture toughness (KIC). Young's modulus is higher for C-terminated configurations than for Si-terminated configurations. Surface energy plays a dominant role in determining the fracture toughness process. Finally, to better understand the electronic properties of this system, the density of states (DOS) is calculated.


Assuntos
Resinas Compostas , Propriedades de Superfície , Teste de Materiais , Resistência à Tração
9.
Materials (Basel) ; 16(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36676411

RESUMO

The most frequently used construction material in buildings is concrete exhibiting a brittle behaviour. Adding fibers to concrete can improve its ductility and mechanical properties. To this end, a laboratory study was conducted to present an experimental model for the specimens' size effect of on macro-synthetic fiber-reinforced concrete using variations in fracture energy. Composite concrete beams with different thicknesses and widths were made and tested under mode I to obtain (1) fracture toughness, (2) fracture energy, and (3) critical stress intensity factor values. Results indicated that by increasing the thickness and the width, fracture toughness and fracture energy were enhanced. Moreover, increasing the thickness and width of the beam led to critical stress intensity factors enhancement respectively by 35.01-41.43% and 7.77-8.09%.

10.
Molecules ; 28(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36677802

RESUMO

The mechanical properties of ceramic-metal nanocomposites are greatly affected by the equivalent properties of the interface of materials. In this study, the effect of vacancy in SiC on the interdiffusion of SiC/Al interfaces is investigated using the molecular dynamics method. The SiC reinforcements exist in the whisker and particulate forms. To this end, cubic and hexagonal SiC lattice polytypes with the Si- and C-terminated interfaces with Al are considered as two samples of metal matrix nanocomposites. The average main and cross-interdiffusion coefficients are determined using a single diffusion couple for each system. The interdiffusion coefficients of the defective SiC/Al are compared with the defect-free SiC/Al system. The effects of temperature, annealing time, and vacancy on the self- and interdiffusion coefficients are investigated. It is found that the interdiffusion of Al in SiC increases with the increase in temperature, annealing time, and vacancy.

11.
Materials (Basel) ; 15(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499858

RESUMO

Silicon carbide foam is a material that can be used as reinforcement of interpenetrated composites. This paper presents an analysis of such a foam subjected to low and fast compression. The analysis is performed using the peridynamics (PD) method. This approach allows for an evaluation of failure modes and such effects of microcracks nucleation, their growth, and, finally, fragmentation. Furthermore, the material appears to behave qualitatively and quantitatively differently while subjected to low- and high-speed steel piston movement. Under slow compression case, damage appears in the entire specimen, but the shape of the structure is not changing significantly, whereas during the fast compression the sample is dynamically fragmented.

12.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208953

RESUMO

This study presents a description of the new technology for producing external or internal layers made of different powders mixed with epoxy resin, which can perform various functions as a protection against impact, erosion, or elevated temperatures as well as provide interlayers during the manufacturing of a ceramic protective barrier by air plasma spraying (APS) on the PMC substrate made of carbon-epoxy. Six types of powders (copper, quartz sand, Al2O3, aluminum, crystalline silica, and microballoon) were used to manufacture (120 °C) different kinds of protective layers (PLs), perfectly joined with the PMCs, in one single autoclave process. The two-layered specimens (2 × 25 × 110 mm) were subjected to a three-point bending (3-PB) displacement-controlled deformation process to determine the critical values of deformations at which the PLs can work safely without being cracked or delaminated. The tests were performed up to the final failure, observing various damage and cracking phenomena. Finally, the numerical simulations were carried out using the representative volume element (RVE) model of the most efforted central parts of the samples to determine the effect of powder grain diameter and resin content on the elastic properties and damage growth of the newly proposed multifunctional PLs. The stress concentrations and damage processes, including cracking and delamination, were analyzed in the whole two-layered system. The best result, in terms of strength during 3-PB testing, was achieved with the PL made of aluminum powder.

13.
Materials (Basel) ; 14(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34947295

RESUMO

This paper presents the results of an experimental study into single-lap joints. One part of the joint was made as a 3D printed polymer and had cylindrical tenons, while the other part was made of an aluminium flat bar having mortises whose diameter and distribution corresponded to the polymer tenons. In addition to the mechanical joint, a layer of double-sided VHB (Very High Bond) adhesive tape was also placed in the lap, thus creating a hybrid joint. In total, 80 specimens were made, which were divided into four groups: A-specimens with one tenon of different diameters, B-specimens with different number of tenons of the same diameter, C-specimens characterised by multi-stage operation and R-reference specimens, connected only by double-sided adhesive tape. The joints were subjected to uniaxial tensile tests. The force-displacement characteristics obtained and the energy required, up to the point of the failure of the joints, have been analysed in this paper. The four and six-stage joints designed can significantly increase the safety of the structures in which they will be used.

14.
Molecules ; 26(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802397

RESUMO

Ti(C,N)-reinforced alumina-zirconia composites with different ratios of C to N in titanium carbonitride solid solutions, such as Ti(C0.3,N0.7) (C:N = 30:70) and Ti(C0.5,N0.5) (C:N = 50:50), were tested to improve their mechanical properties. Spark plasma sintering (SPS) with temperatures ranging from 1600 °C to 1675 °C and pressureless sintering (PS) with a higher temperature of 1720 °C were used to compare results. The following mechanical and physical properties were determined: Vickers hardness, Young's modulus, apparent density, wear resistance, and fracture toughness. A composite with the addition of Ti(C0.5,N0.5)n nanopowder exhibited the highest Vickers hardness of over 19.0 GPa, and its fracture toughness was at 5.0 Mpa·m1/2. A composite with the Ti(C0.3,N0.7) phase was found to have lower values of Vickers hardness (by about 10%), friction coefficient, and specific wear rate of disc (Wsd) compared to the composite with the addition of Ti(C0.5,N0.5). The Vickers hardness values slightly decreased (from 5% to 10%) with increasing sintering temperature. The mechanical properties of the samples sintered using PS were lower than those of the samples that were spark plasma sintered. This research on alumina-zirconia composites with different ratios of C to N in titanium carbonitride solid solution Ti(C,N), sintered using an unconventional SPS method, reveals the effect of C/N ratios on improving mechanical properties of tested composites. X-ray analysis of the phase composition and an observation of the microstructure was carried out.


Assuntos
Óxido de Alumínio/química , Materiais Biocompatíveis/química , Cerâmica/química , Gases em Plasma/química , Titânio/química , Zircônio/química , Dureza , Teste de Materiais , Fenômenos Mecânicos , Propriedades de Superfície , Temperatura
15.
Materials (Basel) ; 14(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467776

RESUMO

Adhesive bonding are becoming increasingly important in civil and mechanical engineering, in the field of mobile applications such as aircraft or automotive. Adhesive joints offer many advantages such as low weight, uniform stress distribution, vibration damping properties or the possibility of joining different materials. The paper presents the results of numerical modeling and the use of neural networks in the analysis of dual adhesive single-lap joints subjected to a uniaxial tensile test. The dual adhesive joint was created through the use of adhesives with various parameters in terms of stiffness and strength. In the axis of the overlap, there was a point bonded joint characterized by greater stiffness and strength, and on the outside, there was a bonded joint limited by the edges of the overlap and characterized by lower stiffness and strength. It is an innovative solution for joining technology and the influence of such parameters as the thickness of one of the adherends, the radius of the point bonded joint and the material parameters of both adhesive layers were analyzed. The joint is characterized by a two-stage degradation process, i.e., after the damage of the rigid adhesive, the flexible adhesive ensures the integrity of the entire joint. For numerical modeling, the Finite Element Method (FEM) and cohesive elements was used, which served as input data to an Artificial Neural Network (ANN). The applied approach allowed the impact of individual parameters on the maximum force, initiation energy, and fracture energy to be studied.

16.
Materials (Basel) ; 13(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906338

RESUMO

Polymer matrix composites (PMC), despite their many advantages, have limited use at elevated temperatures. To expand the scope of their uses, it becomes necessary to use thermal barrier coatings (TBC). In addition to elevated temperatures, composite structures, and thus TBC barriers, can be exposed to damage from impacts of foreign objects. Therefore, before using the thermal barrier in practice, knowledge about its behavior under high-speed loads is necessary. The paper presents results for samples with the PMC/TBC system subjected to dynamic compression using a split Hopkinson pressure bar (SHPB). The substrate was made of CFRP (carbon reinforced polymer) with epoxy matrix and twill fabric. TBC was made of ceramic mat saturated by commercial hardener from Vitcas company. The tests were carried out at ambient temperature and elevated temperature-55 °C and 90 °C. Tests at ambient temperature were carried out for three pressure levels: 1, 1.5, and 2 bar. Only the pressure of 1 bar was used for the elevated temperature. Studies have shown that the limit load is 1 bar for ambient temperature. At 1.5 bar, cracks occurred in the TBC structure. Increased temperature also adversely affects the TBC barrier strength and it is damaged at a pressure of 1 bar.

17.
Skin Res Technol ; 26(3): 390-397, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31820504

RESUMO

BACKGROUND/AIM: It was the aim to establish and validate in vivo confocal Raman spectroscopy for characterization of the lip barrier in conjunction with transepidermal water loss (TEWL) and skin capacitance assessments. For the first time in vivo, barrier-relevant components of the lip (derived, natural moisturizing factors (NMFs) and ceramides are described. METHODS: In 32 healthy volunteers, a dental tongue fixation device was inserted to prevent both voluntary and involuntary lip moisturization during measurements. Seventeen individual parameters relating to water, ceramide, and NMF content were assessed via Raman spectroscopy. Additionally, corneometry and TEWL were measured. To give a guidance for the required volunteer group size of future lip barrier studies for all test parameters, coefficients of variation (CV) were calculated and plots showing the required sample size for a given percentage treatment effect. RESULTS: Raman spectroscopy assessed parameters on the lower lip comprehensively characterized the state of the lip barrier. Parameter variability was sufficiently low to corroborate changes in most parameters using relatively small study populations. CONCLUSIONS: Lip skin is comparatively well hydrated. Biophysical measurement of the lip barrier function is a challenge, as unconscious licking of the lower lip has to be prevented. In vivo confocal Raman spectroscopy provides insightful parameters for the characterization of the lip barrier and sufficiently low inter-individual variability to assess relatively small parameter changes employing relatively few study subjects. Differences at the molecular level and at a high spatial resolution are detectable, and these insights might provide a breakthrough in the evaluation of lip barrier function and developing solutions for lip care.


Assuntos
Lábio/química , Absorção Cutânea/fisiologia , Pele/química , Análise Espectral Raman/métodos , Perda Insensível de Água/fisiologia , Adulto , Ceramidas/química , Ceramidas/metabolismo , Epiderme/metabolismo , Feminino , Humanos , Lábio/metabolismo , Pessoa de Meia-Idade , Pele/metabolismo , Fenômenos Fisiológicos da Pele
18.
Materials (Basel) ; 12(15)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349737

RESUMO

Using the finite element code ABAQUS and the user-defined material utilities UMAT and UMATHT, a solid brick graded finite element is developed for three-dimensional (3D) modeling of free vibrations of thermally loaded functionally gradient material (FGM) sandwich plates. The mechanical and thermal material properties of the FGM sandwich plates are assumed to vary gradually in the thickness direction, according to a power-law fraction distribution. Benchmark problems are firstly considered to assess the performance and accuracy of the proposed 3D graded finite element. Comparisons with the reference solutions revealed high efficiency and good capabilities of the developed element for the 3D simulations of thermomechanical and vibration responses of FGM sandwich plates. Some parametric studies are carried out for the frequency analysis by varying the volume fraction profile and the temperature distribution across the plate thickness.

19.
Materials (Basel) ; 12(12)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212752

RESUMO

The manufacturing technology for adhesive joints is not yet fully optimized, as proved by a large number of papers that have been published in recent years. Future studies on innovative techniques for fabricating adhesive joints should investigate the influence of parameters such as: (1) The shape of adhesive protrusion, (2) lap dimensions, and (3) cohesive layer reduction in the most efforted regions of the joint. With the application of additional mechanical connectors (e.g., rivets, screws, and welds) in adhesive joints, new hybrid connections can be fabricated. The number of publications in this new field is still relatively small. To fill the gap, this paper presents the results of a numerical analysis of different single lap geometries in (1) pure adhesive and (2) hybrid joints. A total of 13 different models with the same surface area of the adhesive layer were considered. In the case of hybrid joints, the adhesive surface before the application of mechanical connectors was assumed to be the same in every tested case. The numerical analysis of pure adhesive and hybrid joints revealed that the differences in strength led to a 30% decrease in the load capacity of these joints. Therefore, when designing pure adhesive and hybrid joints, special attention should be paid to the shape of the lap between the joined elements.

20.
Materials (Basel) ; 12(10)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108987

RESUMO

Metal-ceramic composite (MCC) materials can be used for manufacturing high-responsibility structures such as jet engines or cutting tools. One example of these materials is a two-phase wolfram carbide (WC) and cobalt (Co) composite. This MCC is a combination of hard WC grains with a Co metallic ductile binder. The resulting microstructure is a combination of two phases with significantly different mechanical behaviors. In this study, we investigate impact conditions, starting with an illustrative example of the Taylor impact bar where-although the process is very rapid-the equivalent plastic strain and temperature are higher in the adiabatic solution than those in the coupled solution. On exposing the WC/Co composite with a metallic binder to impact loading, heat is generated by plastic deformation. If the process is fast enough, the problem can be treated as adiabatic. However, a more common situation is that the process is slower, and the heat is generated in the ductile metallic binders. As a result, the associated grains are heated due to the conduction effect. Consequently, the process should be treated as coupled. When the impact is applied over a short time period, maximum temperatures are significantly lower if the process is analyzed as coupled rather than as adiabatic. The grains are immediately affected by temperature increase in the binders. Therefore, the heat conduction effect should not be omitted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA