Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1116894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778708

RESUMO

The world's population is projected to increase by two billion by 2050, resulting in food and energy insecurity. Oilseed crops have been identified as key to address these challenges: they produce and store lipids in the seeds as triacylglycerols that can serve as a source of food/feed, renewable fuels, and other industrially-relevant chemicals. Therefore, improving seed oil content and composition has generated immense interest. Research efforts aiming to unravel the regulatory pathways involved in fatty acid synthesis and to identify targets for metabolic engineering have made tremendous progress. This review provides a summary of the current knowledge of oil metabolism and discusses how photochemical activity and unconventional pathways can contribute to high carbon conversion efficiency in seeds. It also highlights the importance of 13C-metabolic flux analysis as a tool to gain insights on the pathways that regulate oil biosynthesis in seeds. Finally, a list of key genes and regulators that have been recently targeted to enhance seed oil production are reviewed and additional possible targets in the metabolic pathways are proposed to achieve desirable oil content and quality.

2.
Physiol Plant ; 174(6): e13819, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36344438

RESUMO

The quantum yield of photosynthesis (QY, CO2 fixed per light absorbed) depends on the efficiency of light absorption, the coupling between light absorption and electron transport, and the coupling between electron transport and carbon metabolism. QY is generally lower in C3 relative to C4 plants at warm temperatures and differs among the C4 subtypes. We investigated the acclimation to shade of light absorption and electron transport in six representative grasses with C3 , C3 -C4 and C4 photosynthesis. Plants were grown under full (control) or 25% (shade) sunlight. We measured the in vivo activity and stoichiometry of PSI and PSII, leaf spectral properties and pigment contents, and photosynthetic enzyme activities. Under control growth-light conditions, C4 species had higher CO2 assimilation rates, which declined to a greater extent relative to the C3 species. Whole leaf PSII/PSI ratios were highest in the C3 species, while QY and cyclic electron flow (CEF) were highest in the C4 , NADP-ME species. Shade significantly reduced leaf PSII/PSI, linear electron flow (LEF) and CEF of most species. Overall, shade reduced leaf absorptance, especially in the green region, as well as carotenoid and chlorophyll contents in C4 more than non-C4 species. The NAD-ME species underwent the greatest reduction in leaf absorptance and pigments under shade. In conclusion, shade compromised QY the least in the C3 and the most in the C4 -NAD-ME species. Different sensitivity to shade was associated with the ability to maintain leaf absorptance and pigments. This is important for maximising light absorption and minimising photoprotection under low light.


Assuntos
Dióxido de Carbono , Poaceae , Poaceae/metabolismo , Dióxido de Carbono/metabolismo , NAD/metabolismo , Fotossíntese , Folhas de Planta/metabolismo
3.
Photosynth Res ; 149(1-2): 171-185, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33534052

RESUMO

Alternative electron fluxes such as the cyclic electron flux (CEF) around photosystem I (PSI) and Mehler reaction (Me) are essential for efficient photosynthesis because they generate additional ATP and protect both photosystems against photoinhibition. The capacity for Me can be estimated by measuring O2 exchange rate under varying irradiance and CO2 concentration. In this study, mass spectrometric measurements of O2 exchange were made using leaves of representative species of C3 and C4 grasses grown under natural light (control; PAR ~ 800 µmol quanta m-2 s-1) and shade (~ 300 µmol quanta m-2 s-1), and in representative species of gymnosperm, liverwort and fern grown under natural light. For all control grown plants measured at high CO2, O2 uptake rates were similar between the light and dark, and the ratio of Rubisco oxygenation to carboxylation (Vo/Vc) was low, which suggests little potential for Me, and that O2 uptake was mainly due to photorespiration or mitochondrial respiration under these conditions. Low CO2 stimulated O2 uptake in the light, Vo/Vc and Me in all species. The C3 species had similar Vo/Vc, but Me was highest in the grass and lowest in the fern. Among the C4 grasses, shade increased O2 uptake in the light, Vo/Vc and the assimilation quotient (AQ), particularly at low CO2, whilst Me was only substantial at low CO2 where it may contribute 20-50% of maximum electron flow under high light.


Assuntos
Adaptação Ocular/fisiologia , Dióxido de Carbono/metabolismo , Transporte de Elétrons/fisiologia , Oxigênio/metabolismo , Fotossíntese/fisiologia , Luz Solar/efeitos adversos , Produtos Agrícolas/fisiologia , Cycadopsida/fisiologia , Ginkgo biloba/fisiologia , Marchantia/fisiologia , Folhas de Planta/metabolismo , Poaceae/fisiologia , Polypodium/fisiologia , Zea mays/fisiologia
4.
Photosynth Res ; 142(3): 321-334, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31520186

RESUMO

Cyclic electron flow (CEF) around photosystem I (PSI) is essential for generating additional ATP and enhancing efficient photosynthesis. Accurate estimation of CEF requires knowledge of the fractions of absorbed light by PSI (fI) and PSII (fII), which are only known for a few model species such as spinach. No measures of fI are available for C4 grasses under different irradiances. We developed a new method to estimate (1) fII in vivo by concurrently measuring linear electron flux through both photosystems [Formula: see text] in leaf using membrane inlet mass spectrometry (MIMS) and total electron flux through PSII (ETR2) using chlorophyll fluorescence by a Dual-PAM at low light and (2) CEF as ETR1-[Formula: see text]. For a C3 grass, fI was 0.5 and 0.4 under control (high light) and shade conditions, respectively. C4 species belonging to NADP-ME and NAD-ME subtypes had fI of 0.6 and PCK subtype had 0.5 under control. All shade-grown C4 species had fI of 0.6 except for NADP-ME grass which had 0.7. It was also observed that fI ranged between 0.3 and 0.5 for gymnosperm, liverwort and fern species. CEF increased with irradiance and was induced at lower irradiances in C4 grasses and fern relative to other species. CEF was greater in shade-grown plants relative to control plants except for C4 NADP-ME species. Our study reveals a range of CEF and fI values in different plant functional groups. This variation must be taken into account for improved photosynthetic calculations and modelling.


Assuntos
Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/fisiologia , Antimicina A/farmacologia , Clorofila/química , Clorofila/metabolismo , Transporte de Elétrons , Fluorescência , Luz , Espectrometria de Massas/métodos , NAD/metabolismo , NADP/metabolismo , Panicum/fisiologia , Fotossíntese , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Poaceae/fisiologia , Especificidade da Espécie , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA