Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 15(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38921513

RESUMO

Effective root canal disinfection and the subsequent release of natural growth factors from dentin are crucial to the success of regenerative endodontic procedures. This study evaluated the effect of newly introduced calcium silicate-based temporary intracanal medicament Bio-C Temp and calcium hydroxide-based material UltraCal XS on the release of transforming growth factor ß1 (TGF-ß1) from root canal dentin. Twenty-two intact and fully developed human premolars from patients aged 15-18 were shaped and irrigated according to the current clinical recommendations. The teeth were then gently split in half, and the root canal dentin of paired samples was covered with Bio-C Temp or UltraCal XS. After 3 weeks of incubation, the specimens were conditioned with 17% EDTA and the collected solution was subjected to the quantification of the released TGF-ß1 by performing an ELISA. One-way analysis of variance (ANOVA), followed by Tukey's test, was selected to determine the statistically significant differences between the groups at the 0.95 confidence level. The highest mean value of released TGF-ß1 (1993.1 pg/mL) was detected in the control group, where the root canal dentin was conditioned with 17% EDTA alone. Regarding the experimental groups, Bio-C Temp released a statistically significantly higher amount of TGF-ß1 (282.14 pg/mL) compared to UltraCal XS (114.28 pg/mL; p = 0.0158). Bio-C Temp affected the release of growth factors from root canal dentin less than UltraCal XS and may therefore serve as an intracanal medicament for regenerative endodontic procedures.

2.
ACS Appl Nano Mater ; 7(6): 6185-6195, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38544503

RESUMO

The demand for multimodal nanomaterials has intensified in recent years driven by the need for ultrasensitive bioimaging probes and accurate temperature monitoring in biological objects. Among the different multimodal nanomaterials that have been extensively studied in the past decade, upconverting nanoparticles are among the most promising. In this paper, we report the synthesis of upconverting nanoparticles with complex core-shell compositions, capable of being excited by 808 or 980 nm laser irradiation and exhibiting a good MRI response. The synthesized nanoparticles also demonstrated high colloidal stability in both aqueous and biological media as well as temperature-sensing capabilities, including the physiological range. Furthermore, the upconversion nanoparticles exhibited significantly lower cytotoxicity for HEK293T cells than the commercially available MRI contrast agent Gd-DTPA.

3.
Materials (Basel) ; 17(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38541505

RESUMO

Hydraulic calcium silicate-based (HCS) sealers have recently gained tremendous popularity due to their unique properties. However, their removal during endodontic retreatment is challenging. The solvent, which could chemically deteriorate the material, would be highly desirable for endodontic retreatment procedures. This preliminary study assessed the interplay and dissolving capability of 10% and 20% citric acid, compared to 17% EDTA, on commonly used HCS sealers (AH Plus Bioceramic Sealer, Bio-C Sealer, BioRoot RCS, TotalFill BC Sealer), and evaluated the potential impact of these solutions on root dentin structure. The interaction between tested sealers and irrigating solutions was photographed, and solubility-related mass changes were determined. The surface morphology of treated filling materials and dentin was evaluated using a scanning electron microscope (SEM). One-way analysis of variance (ANOVA) along with Tukey's test were used to detect the statistically significant differences among groups at the confidence level of 0.95. Intense gas release was observed during the interaction of HCS materials and citric acid, with no evidently visible "bubbling" after the immersion in EDTA. The mass loss of HCS sealers equally confirmed the significantly higher dissolving characteristics of 10% and 20% citric acid solutions compared to EDTA. The surface structural changes, associated with pore and crack formation, were mainly seen for HCS sealers exposed to citric acid. Meanwhile, no severe erosion was detected for dentin after root canal preparation with 10% and 20% citric acid solutions. These findings demonstrate that citric acid has the potential to dissolve HCS sealers with minimal or no negative impact on root dentin, suggesting citric acid as a solvent for HCS sealers in endodontic retreatment procedures.

4.
RSC Adv ; 13(21): 14370-14378, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37180021

RESUMO

All-inorganic lead perovskite quantum dots (QDs), due to their distinctive optical properties, have become one of the "hottest" topics in materials science; therefore, the development of new QD synthesis methods or their emission color adjustment is of great interest. Within this study, we present the simple preparation of QDs employing a novel ultrasound-induced hot-injection method, which significantly reduces the QD synthesis time from several hours to merely 15-20 minutes. Moreover, the post-synthesis treatment of perovskite QDs in solutions using zinc halogenide complexes could increase the QD emission intensity and, at the same time, boost their quantum efficiency. This behavior is due to the zinc halogenide complex's ability to remove or significantly reduce the number of surface electron traps in perovskite QDs. Finally, the experiment that shows the ability to instantly adjust the desired emission color of perovskite QDs by variation of the amount of added zinc halogenide complex is presented. The instantly obtained perovskite QD colors cover virtually the full range of the visible spectrum. The zinc halogenide modified perovskite QDs exhibit up to 10-15% higher QEs than those prepared by an individual synthesis.

5.
Materials (Basel) ; 15(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35454510

RESUMO

Selective laser etching (SLE) is a technique that allows the fabrication of arbitrarily shaped glass micro-objects. In this work, we show how the capabilities of this technology can be improved in terms of selectivity and etch rate by applying an etchant solution based on a Potassium Hydroxide, water, and isopropanol mixture. By varying the concentrations of these constituents, the wetting properties, as well as the chemical reaction of fused silica etching, can be changed, allowing us to achieve etching rates in modified fused silica up to 820 µm/h and selectivity up to ∼3000. This is used to produce a high aspect ratio (up to 1:1000), straight and spiral microfluidic channels which are embedded inside a volume of glass. Complex 3D glass micro-structures are also demonstrated.

6.
ACS Omega ; 5(23): 14180-14185, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32566886

RESUMO

Anisotropic aerogels are promising bulk materials with a porous 3D structure, best known for their large surface area, low density, and extremely low thermal conductivity. Herein, we report the synthesis and some properties of ultralight magnetic nanofibrous GdPO4 aerogels. Our proposed GdPO4 aerogel synthesis route is eco-friendly and does not require any harsh precursors or conditions. The most common route for magnetic aerogel preparation is the introduction of magnetic nanoparticles into the structure during the synthesis procedure. However, the nanofibrous GdPO4 aerogel reported in this work is magnetic by itself already and no additives are required. The hydrogel used for nanofibrous GdPO4 aerogel preparation was synthesized via a hydrothermal route. The hydrogel was freeze-dried and heat-treated to induce a phase transformation from the nonmagnetic trigonal to magnetic monoclinic phase. Density of the obtained magnetic nanofibrous monoclinic GdPO4 aerogel is only ca. 8 mg/cm3.

7.
Materials (Basel) ; 12(19)2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597346

RESUMO

There are several key requirements that a very good LED phosphor should meet, i.e., strong absorption, high quantum efficiency, high colour purity, and high luminescence quenching temperature. The reported Rb2Bi(PO4)(MoO4):Eu3+ phosphors have all these properties. The Rb2Bi(PO4)(MoO4):Eu3+ phosphors emit bright red light if excited with near-UV radiation. The calculated colour coordinates show good stability in the 77-500 K temperature range. Moreover, sample doped with 50% Eu3+ possesses quantum efficiency close to unity. Besides the powder samples, ceramic disks of Rb2Eu(PO4)(MoO4) specimen were also prepared, and the red light sources from these disks in combination with near-UV emitting LED were fabricated. The obtained results indicated that ceramic disks efficiently absorb the emission of 375 and 400 nm LED and could be applied as a red component in phosphor-converted white LEDs.

8.
Beilstein J Nanotechnol ; 8: 1815-1824, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28904843

RESUMO

Upconverting nanoparticles (UCNPs) are promising, new imaging probes capable of serving as multimodal contrast agents. In this study, monodisperse and ultrasmall core and core-shell UCNPs were synthesized via a thermal decomposition method. Furthermore, it was shown that the epitaxial growth of a NaGdF4 optical inert layer covering the NaGdF4:Yb,Er core effectively minimizes surface quenching due to the spatial isolation of the core from the surroundings. The mean diameter of the synthesized core and core-shell nanoparticles was ≈8 and ≈16 nm, respectively. Hydrophobic UCNPs were converted into hydrophilic ones using a nonionic surfactant Tween 80. The successful coating of the UCNPs by Tween 80 has been confirmed by Fourier transform infrared (FTIR) spectroscopy. Scanning electron microscopy (SEM), powder X-ray diffraction (XRD), photoluminescence (PL) spectra and magnetic resonance (MR) T1 relaxation measurements were used to characterize the size, crystal structure, optical and magnetic properties of the core and core-shell nanoparticles. Moreover, Tween 80-coated core-shell nanoparticles presented enhanced optical and MR signal intensity, good colloidal stability, low cytotoxicity and nonspecific internalization into two different breast cancer cell lines, which indicates that these nanoparticles could be applied as an efficient, dual-modal contrast probe for in vivo bioimaging.

9.
Materials (Basel) ; 10(1)2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-28772389

RESUMO

We introduce optically clear and resilient free-form micro-optical components of pure (non-photosensitized) organic-inorganic SZ2080 material made by femtosecond 3D laser lithography (3DLL). This is advantageous for rapid printing of 3D micro-/nano-optics, including their integration directly onto optical fibers. A systematic study of the fabrication peculiarities and quality of resultant structures is performed. Comparison of microlens resiliency to continuous wave (CW) and femtosecond pulsed exposure is determined. Experimental results prove that pure SZ2080 is ∼20 fold more resistant to high irradiance as compared with standard lithographic material (SU8) and can sustain up to 1.91 GW/cm² intensity. 3DLL is a promising manufacturing approach for high-intensity micro-optics for emerging fields in astro-photonics and atto-second pulse generation. Additionally, pyrolysis is employed to homogeneously shrink structures up to 40% by removing organic SZ2080 constituents. This opens a promising route towards downscaling photonic lattices and the creation of mechanically robust glass-ceramic microstructures.

10.
Sci Rep ; 6: 26098, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27180941

RESUMO

A good LED phosphor must possess strong enough absorption, high quantum yields, colour purity, and quenching temperatures. Our synthesized Y2Mo4O15:Eu(3+) phosphors possess all of these properties. Excitation of these materials with near-UV or blue radiation yields bright red emission and the colour coordinates are relatively stable upon temperature increase. Furthermore, samples doped with 50% Eu(3+) showed quantum yields up to 85%, what is suitable for commercial application. Temperature dependent emission spectra revealed that heavily Eu(3+) doped phosphors possess stable emission up to 400 K and lose half of the efficiency only at 515 K. In addition, ceramic disks of Y2Mo4O15:75%Eu(3+) phosphor with thickness of 0.71 and 0.98 mm were prepared and it turned out that they efficiently convert radiation of 375 and 400 nm LEDs to the red light, whereas combination with 455 nm LED yields purple colour.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA