Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Dent (Shiraz) ; 24(3): 285-292, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37727353

RESUMO

Statement of the Problem: It is important to use orthodontic composites with favorable properties, which are easily removed after the end of the treatment but not easily debonded during treatment. Nanoparticles have drawn attention for their antibacterial properties when added to composite resins. However, the effect of addition of nanoparticle on shear bond strength is not broadly discussed. Purpose: The present study was designed to compare the shear bond strength of orthodontic brackets bonded by orthodontic composite containing silver nanoparticles with orthodontic composite containing amorphous tricalcium phosphate nanoparticles. Materials and Method: In this ex vivo study, 36 sound extracted human premolars were used and randomly divided into three groups. The brackets were bonded in the first group by composite without nanoparticles, in the second group by composite containing 3% amorphous tricalcium phosphate nanoparticles and in the third group by composite containing 0.3% silver nanoparticles at the buccal surface of the teeth. The shear bond strengths of the samples were measured 24 hours after preparation by a universal testing machine. Data were analyzed using SPSS 21 software through one-way ANOVA and Tamhane's T2 multiple comparison tests. pValues under 0.05 were considered significant. Results: There was no significant difference between the mean shear bond strength of composite containing amorphous tricalcium phosphate nanoparticles with composite without nanoparticles (p= 0.142). However, the mean shear bond strength in the composite containing silver nanoparticles was significantly lower than the other two groups (p< 0.001). Conclusion: According to the results of this study, the addition of amorphous tricalcium phosphate nanoparticles to orthodontic composite does not significantly decrease the shear bond strength while silver nanoparticles reduce the shear bond strength of orthodontic composite.

2.
J Mol Graph Model ; 117: 108311, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36087380

RESUMO

Investigating Epoxy/hardener ratio and adsorption rate in epoxy/graphene oxide nanocomposites is of great importance, since these values can affect on the mechanical properties of the nanocomposite. In this study, molecular dynamics simulation was used to investigate and compare the mechanical properties of epoxy/graphene and graphene oxide nanocomposites (EPON 828, EPON 862, Epoxy Novolac, and Cycloaliphatic Epoxy with GNs and GO). Also, the effect of different weight percentages of graphene oxide (0,1,3 and 5 wt %), different weight percentages of epoxy compared to hardener, adsorption rate, and different temperatures were studied. The results showed that increasing the weight percentage of graphene oxide in epoxy matrices improved the adsorption rate between Epoxy/GO and the strength of nanocomposites. In addition, the amount of Young's modulus slightly decreased with increasing the temperature. Besides, the highest amount of Young modulus was obtained by increasing the weight percentage of epoxy to hardener at 63:37 wt %. Moreover, by comparing the mechanical properties of epoxy nanocomposites at 5 wt % graphene oxide, the highest Young modulus were found to be related to Novolac/GO 4.27 Gpa and EPON 862/GO 4.24 Gpa. This study contributes to a more comprehensive understanding on the behavior of the mechanical properties of epoxy/graphene oxide nanocomposites.


Assuntos
Grafite , Nanocompostos , Adsorção , Resinas Epóxi , Simulação de Dinâmica Molecular , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA