Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 255(Pt 1): 113175, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31542669

RESUMO

Emissions from passenger cars are one of major sources that deteriorate urban air quality. This study presents characterization of real-drive emissions from three Euro 6 emission level passenger cars (two gasoline and one diesel) in terms of fresh particles and secondary aerosol formation. The gasoline vehicles were also characterized by chassis dynamometer studies. In the real-drive study, the particle number emissions during regular driving were 1.1-12.7 times greater than observed in the laboratory tests (4.8 times greater on average), which may be caused by more effective nucleation process when diluted by real polluted and humid ambient air. However, the emission factors measured in laboratory were still much higher than the regulatory value of 6 × 1011 particles km-1. The higher emission factors measured here result probably from the fact that the regulatory limit considers only non-volatile particles larger than 23 nm, whereas here, all particles (also volatile) larger than 3 nm were measured. Secondary aerosol formation potential was the highest after a vehicle cold start when most of the secondary mass was organics. After the cold start, the relative contributions of ammonium, sulfate and nitrate increased. Using a novel approach to study secondary aerosol formation under real-drive conditions with the chase method resulted mostly in emission factors below detection limit, which was not in disagreement with the laboratory findings.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Veículos Automotores , Emissões de Veículos/análise , Poluição do Ar , Condução de Veículo , Gasolina/análise , Laboratórios , Óxidos de Nitrogênio/análise
2.
Sensors (Basel) ; 19(14)2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31319514

RESUMO

Monitoring the filtration efficiency of the diesel particulate filter (DPF), is a legislative requirement for minimizing particulate matter (PM) emissions from diesel engines of passenger cars and heavy-duty vehicles. To reach this target, on-board diagnostics (OBD) in real-time operation are required. Such systems in passenger cars are often utilizing a soot sensor, models for PM emissions simulation and algorithms for diagnosis. Their performance is associated with a series of challenges related to the accuracy and effectiveness of involved models, algorithms and hardware. This paper analyzes the main influencing factors and their impact on the effectiveness of the OBD system. The followed method comprised an error propagation analysis to quantify the error of detection during a New European Driving Cycle (NEDC). The results of the study regarding the performance of the OBD model showed that the total error of diagnosis is ±28%. This performance can be improved by increasing the sensor accuracy and the soot model, which can make the model appropriate for even tighter legislation limits and other approaches such as on-board monitoring (OBM).

3.
Sci Total Environ ; 666: 337-346, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30798242

RESUMO

The current study presents a detailed analysis of the gaseous emissions, focusing on CO2 and NOx, of diesel vehicles under several operating conditions. An assessment is also made on the impact and effectiveness of the Real Driving Emissions (RDE) test, which is mandatory by the European Union (EU) type approval regulation for passenger cars since September 2017. The method followed comprises emissions measurement tests on three Euro 6 diesel vehicles, under laboratory and various on-road operation conditions. Chassis dynamometer tests in the laboratory showed that emissions over the current type approval test (World-wide harmonized Light-duty Test Procedure or WLTP), and over the former one (New European Driving Cycle or NEDC), poorly reflect real-world levels. However, the most demanding CADC testing comes closer to real drive emissions. Comparison of driving conditions on the chassis dynamometer over different driving cycles and on the road reveals that the emission performance substantially varies between different tests, even for apparently similar operation conditions. The NOx emissions reduction strategy of pre-RDE monitoring Euro 6 vehicles seems to be optimized for the NEDC driving conditions, which are not representative of the real-world driving conditions. The real-world emissions during normal driving conditions are effectively captured with the new RDE test, however driving the vehicle dynamically, at conditions outside the RDE regulation boundaries, results to disproportional high emissions. This is a significant shortcoming which might be critical for populations living on hilly areas or those close to specific micro-environments, such as highway entrance ramps, traffic lights, etc.

4.
Sci Total Environ ; 618: 1400-1407, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29096950

RESUMO

The objective of this study was to test the potential for NOx emissions improvements on a typical Euro 6 diesel vehicle, following modifications to its emissions control system, under Real Drive Emissions (RDE) testing conditions. A commercially available car was selected and was first measured in its original configuration according to RDE on the road and an initial conformity factor (CF) of 5.4 was determined. Subsequent engine calibration and installation of a Selective Catalytic Reduction (SCR) device were conducted and tested on a fully transient engine dyno setup, which precisely reproduced the engine operation under the on-road RDE test. The NOx reduction achieved with those upgrades was 90%, leading to a CF of 0.53, with no CO2 or fuel consumption penalty. These findings demonstrate that diesel vehicles can reach low NOx levels under real world driving conditions, when well-designed modern exhaust aftertreatment components are installed and properly calibrated.

5.
Environ Res ; 154: 181-189, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28088011

RESUMO

BACKGROUND: In order to curb traffic-related air pollution and its impact on the physical environment, contemporary city commuters are encouraged to shift from private car use to active or public transport modes. However, personal exposures to particulate matter (PM), black carbon and noise during commuting may be substantial. Therefore, studies comparing exposures during recommended modes of transport versus car trips are needed. METHODS: We measured personal exposure to various-sized particulates, soot, and noise during commuting by bicycle, bus and car in three European cities: Helsinki in Finland, Rotterdam in the Netherlands and Thessaloniki in Greece using portable monitoring devices. We monitored commonly travelled routes in these cities. RESULTS: The total number of one-way trips yielding data on any of the measured parameters were 84, 72, 94 and 69 for bicycle, bus, closed-window car and open-window car modes, respectively. The highest mean PM2.5 (85µg/m3), PM10 (131µg/m3), black carbon (10.9µg/m3) and noise (75dBA) levels were recorded on the bus, bus (again), open-window car and bicycle modes, respectively, all in Thessaloniki, PM and soot concentrations were generally higher during biking and taking a bus than during a drive in a a car with closed windows. Ratios of bike:car PM10 ranged from 1.1 in Thessaloniki to 2.6 in Helsinki, while bus:car ratios ranged from in 1.0 in Rotterdam to 5.6 in Thessaloniki. Higher noise levels were mostly recorded during bicycle rides. CONCLUSION: Based on our study, active- and public-transport commuters are often at risk of higher air pollution and noise exposure than private car users. This should be taken into account in urban transportation planning.


Assuntos
Automóveis , Ciclismo , Exposição Ambiental/análise , Veículos Automotores , Ruído , Material Particulado/análise , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Cidades , Finlândia , Grécia , Humanos , Países Baixos , Meios de Transporte
6.
Environ Sci Technol ; 50(23): 13151-13159, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27809487

RESUMO

Hybridization offers great potential for decreasing pollutant and carbon dioxide emissions of diesel cars. However, an assessment of the real-world emissions performance of modern diesel hybrids is missing. Here, we test three diesel-hybrid cars on the road and benchmark our findings with two cars against tests on the chassis dynamometer and model simulations. The pollutant emissions of the two cars tested on the chassis dynamometer were in compliance with the relevant Euro standards over the New European Driving Cycle and Worldwide harmonized Light vehicles Test Procedure. On the road, all three diesel-hybrids exceeded the regulatory NOx limits (average exceedance for all trips: +150% for the Volvo, +510% for the Peugeot, and +550% for the Mercedes-Benz) and also showed elevated on-road CO2 emissions (average exceedance of certification values: +178, +77, and +52%, respectively). These findings point to a wide discrepancy between certified and on-road CO2 and suggest that hybridization alone is insufficient to achieve low-NOx emissions of diesel powertrains. Instead, our simulation suggests that properly calibrated selective catalytic reduction filter and lean-NOx trap after-treatment technologies can reduce the on-road NOx emissions to 0.023 and 0.068 g/km on average, respectively, well below the Euro 6 limit (0.080 g/km).


Assuntos
Poluentes Atmosféricos , Gasolina , Assistência ao Convalescente , Automóveis , Veículos Automotores , Emissões de Veículos
7.
Environ Sci Technol ; 48(19): 11527-34, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25167537

RESUMO

The introduction of selective catalytic reduction (SCR) aftertreatment to meet stringent diesel NOx emission standards around the world increases exhaust ammonia. Further to the direct air quality and health implications of ammonia, this may also lead to particle formation in the exhaust. In this study, an ammonia SCR system was examined with respect to its impact on both solid and total exhaust particle number and size distribution, downstream of a diesel particulate filter (DPF). Fuel post-injection was conducted in some tests to investigate the effect of ammonia during active DPF regeneration. On average, the post-DPF solid >23 nm and total <23 nm particle number emissions were increased by 129% (range 80-193%) and by 67% (range 26-136%), respectively, when 100 ppm ammonia level was induced downstream of the SCR catalyst. This is a typical level during ammonia overdosing, often practiced for efficient NOx control. Ammonia did not have a significant additional effect on the high particle concentrations measured during DPF regeneration. Based on species availability and formation conditions, sulfate, nitrate, and chloride salts with ammonium are possible sources of the new particles formed. Ammonia-induced particle formation corresponds to an environmental problem which is not adequately addressed by current regulations.


Assuntos
Amônia/análise , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Catálise , Oxirredução , Tamanho da Partícula
8.
Environ Sci Technol ; 47(11): 5931-8, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23597117

RESUMO

The link between emissions of vehicular particulate matter (PM) and adverse health effects is well established. However, the influence of new emission control technologies and fuel types on both PM emissions and health effects has been less well investigated. We examined the health impact of PM emissions from two vehicles equipped with or without a diesel particulate filter (DPF). Both vehicles were powered either with diesel (B0) or a 50% v/v biodiesel blend (B50). The DPF effectively decreased PM mass emissions (∼85%), whereas the fuel B50 without DPF lead to less reduction (∼50%). The hazard of PM per unit distance driven was decreased for the DPF-equipped vehicle as indicated by a reduced cytotoxicity, oxidative, and pro-inflammatory potential. This was not evident and even led to an increase when the hazard was expressed on a per unit of mass basis. In general, the PM oxidative potential was similar or reduced for the B50 compared to the B0 powered vehicle. However, the use of B50 resulted in increased cytotoxicity and IL-6 release in BEAS-2B cells irrespective of the expression metric. This study shows that PM mass reduction achieved by the use of B50 will not necessarily decrease the hazard of engine emissions, while the application of a DPF has a beneficial effect on both PM mass emission and PM hazard.


Assuntos
Emissões de Veículos/análise , Emissões de Veículos/toxicidade , Biocombustíveis/toxicidade , Ditiotreitol/metabolismo , Células Epiteliais/efeitos dos fármacos , Filtração/instrumentação , Humanos , Interleucina-6/metabolismo , Oxirredução , Material Particulado/toxicidade , Testes de Toxicidade/métodos
9.
J Air Waste Manag Assoc ; 60(10): 1223-36, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21090550

RESUMO

This paper presents the measurement of airborne particle properties with use of a dedicated sampling protocol and a measurement setup directly installed in the exhaust line of vehicles and engines. The sampling system dilutes a small part of the exhaust directly at the tailpipe without the need of exhaust gas transfer lines that may lead to sampling artifacts. Dilution takes place in two steps with a primary dilution ratio universally set at a value of 12.5:1 for all vehicles and engines tested, and subsequent dilution steps reducing particle concentration within the measuring range of the instruments used. Dilution air temperature and residence time were set at 32 degrees C and 2.5 sec respectively, to allow repeatable measurement of nucleation-mode particles. The paper summarizes the specifications of the system, evaluates its performance in comparison to real-world dilution (chasing experiments), and presents the repeatability and reproducibility of measurements performed in different laboratories. In general, after taking precautions for the setup and condition of instruments, both measurement quality indices reached levels similar to the measurement of particulate matter (PM) mass. Application of the system, using the same protocol, to measure many light-duty vehicles and engines is finally demonstrated, providing useful conclusions for the emission performance of different sized engines. The study concludes that the use of partial-flow sampling systems may offer advantages for the measurement of particle emissions from low-emission engines compared with constant volume sampling facilities, including lower cost of purchase and operation, versatility, lack of artifacts, and possibilities for standardization in different environments.


Assuntos
Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/métodos , Emissões de Veículos/análise , Aerossóis , Poluição do Ar/análise , Monitoramento Ambiental/instrumentação , Europa (Continente) , Reprodutibilidade dos Testes , Manejo de Espécimes
10.
Inhal Toxicol ; 22 Suppl 2: 59-69, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21029033

RESUMO

This study presents different research techniques linked together to improve our understanding of the particulate matter (PM) impacts on health. PM samples from the exhaust of different vehicles were collected by a versatile aerosol concentration enrichment system (VACES). Waterborne PM samples were collected with this technique, thus retaining the original physicochemical characteristics of aerosol particles. PM samples originated from a gasoline Euro 3 car and two diesel cars complying with the Euro 2 and Euro 4 standards, respectively. The Euro 2 diesel car operated consecutively on fossil diesel and biodiesel. The Euro 4 car was also retrofitted with a diesel particle filter. In total, five vehicle configurations and an equal number of samples were examined. Each sample was intratracheally instilled to 10 mice at two different dose levels (50 and 100 µL). The mice were analyzed 24 h after instillation for acute lung inflammation by bronchoalveolar lavage and also for hematological changes. Results show that a moderate but still significant inflammatory response is induced by PM samples, depending on the vehicle. Several organic and inorganic species, including benz(a)anthracene, chrysene, Mn, Fe, Cu, and heavy polycyclic aromatic hydrocarbons (PAHs), as well as the reactive oxygen species content of the PM suspensions are correlated to the observed responses. The study develops conceptual dose-response functions for the different vehicle configurations. These demonstrate that inflammatory response is not directly proportional to the mass dose level of the administered PM and that the relative toxicity potency depends on the dosage level.


Assuntos
Poluentes Atmosféricos/toxicidade , Gasolina/toxicidade , Inflamação/metabolismo , Tamanho da Partícula , Emissões de Veículos/toxicidade , Animais , Crisenos/toxicidade , Monitoramento Ambiental , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Material Particulado/análise , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Testes de Toxicidade
11.
Environ Pollut ; 158(5): 1451-60, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20080326

RESUMO

Five biodiesels from different feedstocks (rapeseed, soy, sunflower, palm, and used fried oils) blended with diesel at 10% vol. ratio (B10), were tested on a Euro 3 common-rail passenger car. Limited effects (-2% to +4%) were observed on CO(2) emissions. CO and HC emissions increased between 10% and 25% on average, except at high speed - high power where emissions were too low to draw conclusions. NOx emissions increased by up to 20% for two out of the five blends, decreased by up to 15% for two other blends, and remained unchanged for one blend. Particulate matter (PM) was reduced for all blends by up to 25% and the reductions were positively correlated with the extent of biodiesel saturation. PM reductions are associated with consistent reductions in non-volatile particle number. A variable behaviour in particle number is observed when volatile particles are also accounted.


Assuntos
Poluentes Atmosféricos/análise , Automóveis , Biocombustíveis/análise , Material Particulado/análise , Monitoramento Ambiental , Poluição Ambiental/prevenção & controle
12.
Environ Pollut ; 158(5): 1584-94, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20083330

RESUMO

This study explores the impact of five different types of methyl esters on polycyclic aromatic hydrocarbon (PAH), nitrated-PAH and oxygenated PAH emissions. The measurements were conducted on a chassis dynamometer, according to the European regulation. Each of the five different biodiesels was blended with EN590 diesel at a proportion of 10-90% v/v (10% biodiesel concentration). The vehicle was a Euro 3 compliant common-rail diesel passenger car. Emission measurements were performed over the NEDC and compared with those of the real traffic-based Artemis driving cycles. The experimental results showed that the addition of biodiesel led to some important increases in low molecular-weight PAHs (phenanthrene and anthracene) and to both increases and reductions in large PAHs which are characterised by their carcinogenic and mutagenic properties. Nitro-PAHs were found to reduce with biodiesel whereas oxy-PAH emissions presented important increases with the biodiesel blends. The impact of biodiesel source material was particularly clear on the formation of PAH compounds. It was found that most PAH emissions decreased as the average load and speed of the driving cycle increased. Cold-start conditions negatively influenced the formation of most PAH compounds. A similar trend was observed with particulate alkane emissions.


Assuntos
Poluentes Atmosféricos/química , Automóveis , Biocombustíveis/análise , Poluição Ambiental/prevenção & controle , Hidrocarbonetos Policíclicos Aromáticos/química , Estrutura Molecular
13.
Environ Pollut ; 158(7): 2496-503, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20034715

RESUMO

Today in most European member states diesel contains up to 5% vol biodiesel. Since blending is expected to increase to 10% vol, the question arises, how this higher mixing ratio will affect tailpipe emissions particularly those linked to adverse health effects. This paper focuses on the impact of biodiesel on carbonyl compound emissions, attempting also to identify possible relationship between biodiesel feedstock and emissions. The blends were produced from five different feedstocks, commonly used in Europe. Measurements were conducted on a Euro 3 common-rail passenger car over various driving cycles. Results indicate that generally the use of biodiesel at low concentrations has a minor effect on carbonyl compound emissions. However, certain biodiesels resulted in significant increases while others led to decreases. Biodiesels associated with increases were those derived from rapeseed oil (approx. 200%) and palm oil (approx. 180%), with the highest average increases observed at formaldehyde and acroleine/acetone.


Assuntos
Biocombustíveis , Emissões de Veículos/análise , Monitoramento Ambiental , Ácidos Graxos Monoinsaturados , Óleo de Palmeira , Óleos de Plantas/química , Óleo de Brassica napus
14.
J Air Waste Manag Assoc ; 60(10): 1223-1236, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29090649

RESUMO

This paper presents the measurement of airborne particle properties with use of a dedicated sampling protocol and a measurement setup directly installed in the exhaust line of vehicles and engines. The sampling system dilutes a small part of the exhaust directly at the tailpipe without the need of exhaust gas transfer lines that may lead to sampling artifacts. Dilution takes place in two steps with a primary dilution ratio universally set at a value of 12.5:1 for all vehicles and engines tested, and subsequent dilution steps reducing particle concentration within the measuring range of the instruments used. Dilution air temperature and residence time were set at 32 °C and 2.5 sec respectively, to allow repeatable measurement of nucleation-mode particles. The paper summarizes the specifications of the system, evaluates its performance in comparison to real-world dilution (chasing experiments), and presents the repeatability and reproducibility of measurements performed in different laboratories. In general, after taking precautions for the setup and condition of instruments, both measurement quality indices reached levels similar to the measurement of particulate matter (PM) mass. Application of the system, using the same protocol, to measure many light-duty vehicles and engines is finally demonstrated, providing useful conclusions for the emission performance of different sized engines. The study concludes that the use of partial-flow sampling systems may offer advantages for the measurement of particle emissions from low-emission engines compared with constant volume sampling facilities, including lower cost of purchase and operation, versatility, lack of artifacts, and possibilities for standardization in different environments.

15.
Environ Sci Technol ; 43(16): 6334-40, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19746734

RESUMO

Three light-duty vehicles in five different configurations [a Honda Accord operating with diesel with a closed-coupled oxidation catalyst and an underfloor catalyst replaced in some tests with a diesel particle filter (DPF), a Toyota Corolla operating with gasoline, and a VW Golf alternatively operating with petrodiesel or biodiesel] were tested in a dynamometer facility to develop an improved understanding of the factors affecting the toxicity of particulate exhaust emissions. The vehicles were tested using a variety of real-world driving cycles, more than the certification test (New European Driving Cycle). Particle samples were collected and analyzed for elemental and organic carbon (EC and OC, respectively), water soluble and water insoluble organic carbon (WSOC and WISOC, respectively), and inorganic ions, and the emission rates (mg/km) for each vehicle/configuration were determined. A dithiothreitol (DTT) assay was used to assess the oxidative potential of the particulate matter (PM) samples. The DPF-equipped diesel and gasoline vehicles were characterized by the lowest overall PM mass emissions, while the diesel and biodiesel cars produced the most potent exhaust in terms of oxidative activity. When the DPF was fitted on the Honda Accord diesel vehicle, the mass emission rates and distance-based oxidative potential were both decreased by 98%, compared to the original configuration. Correlation analysis showed that the DTT consumption rate was highly associated with WSOC, WISOC, and OC (R = 0.98, 0.93, and 0.94, respectively), consistent with previous findings.


Assuntos
Automóveis , Fontes de Energia Bioelétrica , Gasolina/análise , Material Particulado/química , Emissões de Veículos/análise , Carbono/análise , Ditiotreitol/química , Íons , Oxirredução/efeitos dos fármacos , Material Particulado/toxicidade , Análise de Regressão , Emissões de Veículos/toxicidade
16.
J Air Waste Manag Assoc ; 59(6): 695-703, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19603737

RESUMO

To improve the accuracy, reliability, and representativeness of emission factors, 10 European laboratories worked together to study the influence of 20 parameters on the measurement of light-vehicle emission factors on chassis dynamometer of 4 main categories: driving patterns, vehicle-related parameters, vehicle sampling, and laboratory-related parameters. The results are based on (1) literature synthesis, (2) approximately 2700 specific tests with 183 vehicles, and (3) the reprocessing of more than 900 tests. These tests concern the regulated atmospheric pollutants and pre-Euro to Euro 4 vehicles. Of the 20 parameters analyzed, 7 seemed to have no effect, 7 were qualitatively influential, and 6 were highly influential (gearshift strategy, vehicle mileage, ambient temperature, humidity, dilution ratio, and driving cycle). The first four of the six were able to have correction factors developed for them. The results allow for the design of recommendations or guidelines for the emission factor measurement method.


Assuntos
Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Emissões de Veículos/análise , Poluentes Atmosféricos , Poluição do Ar/prevenção & controle , Europa (Continente) , Gasolina , Veículos Automotores , Veículos Farmacêuticos , Fatores de Tempo
17.
Environ Pollut ; 157(8-9): 2320-7, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19386405

RESUMO

Particulate matter (PM) emitted from three light-duty vehicles was studied in terms of its physicochemical and ecotoxicological character using Microtox bioassay tests. A diesel vehicle equipped with an oxidation catalyst emitted PM which consisted of carbon species at over 97%. PM from a diesel vehicle with a particle filter (DPF) consisted of almost equal amounts of carbon species and ions, while a gasoline vehicle emitted PM consisting of approximately 90% carbon and approximately 10% ions. Both the DPF and the gasoline vehicles produced a distinct nucleation mode at 120 km/h. The PM emitted from the DPF and the gasoline vehicles was less ecotoxic than that of conventional diesel, but not in direct proportion to the emission levels of the different vehicles. These results indicate that PM emission reductions are not equally translated into ecotoxicity reductions, implying some deficiencies on the actual environmental impact of emission control technologies and regulations.


Assuntos
Poluentes Atmosféricos/análise , Veículos Automotores/estatística & dados numéricos , Material Particulado/análise , Emissões de Veículos/análise , Poluentes Atmosféricos/química , Poluentes Atmosféricos/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Monitoramento Ambiental , Modelos Químicos , Material Particulado/química , Material Particulado/toxicidade , Testes de Toxicidade , Emissões de Veículos/toxicidade
18.
Inhal Toxicol ; 20(6): 547-66, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18444008

RESUMO

Envirox is a scientifically and commercially proven diesel fuel combustion catalyst based on nanoparticulate cerium oxide and has been demonstrated to reduce fuel consumption, greenhouse gas emissions (CO(2)), and particulate emissions when added to diesel at levels of 5 mg/L. Studies have confirmed the adverse effects of particulates on respiratory and cardiac health, and while the use of Envirox contributes to a reduction in the particulate content in the air, it is necessary to demonstrate that the addition of Envirox does not alter the intrinsic toxicity of particles emitted in the exhaust. The purpose of this study was to evaluate the safety in use of Envirox by addressing the classical risk paradigm. Hazard assessment has been addressed by examining a range of in vitro cell and cell-free endpoints to assess the toxicity of cerium oxide nanoparticles as well as particulates emitted from engines using Envirox. Exposure assessment has taken data from modeling studies and from airborne monitoring sites in London and Newcastle adjacent to routes where vehicles using Envirox passed. Data have demonstrated that for the exposure levels measured, the estimated internal dose for a referential human in a chronic exposure situation is much lower than the no-observed-effect level (NOEL) in the in vitro toxicity studies. Exposure to nano-size cerium oxide as a result of the addition of Envirox to diesel fuel at the current levels of exposure in ambient air is therefore unlikely to lead to pulmonary oxidative stress and inflammation, which are the precursors for respiratory and cardiac health problems.


Assuntos
Cério/química , Cério/toxicidade , Gasolina/análise , Nanopartículas/química , Nanopartículas/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/metabolismo , Ácido Ascórbico/química , Catálise , Linhagem Celular , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Interleucina-8/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Oxirredução , Tamanho da Partícula , Material Particulado/química , Material Particulado/toxicidade , Ratos , Medição de Risco , Superóxido Dismutase/metabolismo , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Emissões de Veículos
19.
Environ Sci Technol ; 40(15): 4739-45, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16913132

RESUMO

The Dekati mass monitor (OMM) is an instrument which measures the mass concentration of airborne particles in real time by combining aerodynamic and mobility size particle classification. In this study, we evaluate the performance of the DMM by sampling exhaust from five engines and vehicles of different technologies in both steady-state and transient tests. DMM results are found higher than the filter-based particulate matter (PM) by 39 +/- 24% (range stands for +/- one standard deviation) for 62 diesel tests conducted in total and 3% and 14% higher, respectively, in two gasoline tests. To explore whether the difference occurs because of the different measurement principles of DMM and filter-based PM, the DMM operation is replicated over steady-state tests by combining an electrical low-pressure impactor (ELPI) and a scanning mobility particle sizer (SMPS). The correlation of ELPI and SMPS derived mass and filter-based PM is satisfactory (R2 = 0.95) with a mean deviation of 5 +/- 15%. For the same tests, the correlation of DMM with PM was also high (R2 = 0.95), but DMM exceeded PM by 44 +/- 23% on average. The comparison of ELPI and SMPS and DMM results reveals that the latter overestimates both the geometric mean diameter and especially the width of the particle mass-weighted size distribution. These findings demonstrate thatthe statistically significant difference between the DMM and the filter-based PM cannot just originate from the different measurement principles but also from the actual implementation of the combined aerodynamic-mobility measurement in the DMM. Optimizing the DMM will require changes in its design and/or the calculation algorithm to improve the resolution and width of the aerodynamic size distribution recorded.


Assuntos
Monitoramento Ambiental/métodos , Tamanho da Partícula , Emissões de Veículos/análise , Algoritmos , Material Particulado/análise
20.
Sci Total Environ ; 357(1-3): 247-70, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15975633

RESUMO

The scope of this paper is to summarise a methodology developed for TRENDS (TRansport and ENvironment Database System-TRENDS). The main objective of TRENDS was the calculation of environmental pressure indicators caused by transport. The environmental pressures considered are associated with air emissions from the four main transport modes, i.e. road, rail, ships and air. In order to determine these indicators a system for calculating a range of environmental pressures due to transport was developed within a PC-based MS Access environment. Emphasis is given on the latest features incorporated in the model and their applications. One of the recently developed features of the software provides an option for simple scenario analysis including vehicle dynamics (such as turnover and evolution) for all EU15 member states. This feature is called the Transport Activity Balance module (TAB) and enables the production of collective results for all transport modes as well as a comparative assessment of air emissions produced by the various modes. Traffic activity and emission data obtained according to a basic (reference) scenario are displayed for the time period 1970-2020. In addition, a detailed assessment of the results produced by TRENDS was conducted by means of comparison with data found in the literature. Finally, vehicle emissions produced by the model for the EU15 member states were spatially disaggregated for the base year, 1995 and GIS maps were generated. Examples of these maps are displayed in this document, for the various modes of transport considered in the study.


Assuntos
Poluentes Atmosféricos/análise , Modelos Teóricos , Software , Meios de Transporte , Dióxido de Carbono/análise , Monóxido de Carbono/análise , Bases de Dados como Assunto , Poeira/análise , Monitoramento Ambiental , Chumbo/análise , Óxidos de Nitrogênio/análise , Compostos Orgânicos/análise , Óxidos de Enxofre/análise , Emissões de Veículos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA