Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chaos ; 28(9): 096113, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30278650

RESUMO

Walkers are dual objects comprising a bouncing droplet dynamically coupled to an underlying Faraday wave at the surface of a vibrated bath. In this paper, we study the wave-mediated interaction of two walkers launched at one another, both experimentally and theoretically. Different outcomes are observed in which either the walkers scatter or they bind to each other in orbits or promenade-like motions. The outcome is highly sensitive to initial conditions, which is a signature of chaos, though the time during which perturbations are amplified is finite. The vertical bouncing dynamics, periodic for a single walker, is also strongly perturbed during the interaction, owing to the superposition of the wave contributions of each droplet. Thanks to a model based on inelastic balls coupled to the Faraday waves, we show that this perturbed vertical dynamics is the source of horizontal chaos in such a system.

2.
Phys Rev E ; 94(5-1): 053112, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27967031

RESUMO

Droplets can bounce indefinitely on a liquid bath vertically vibrated in a sinusoidal fashion. We here present experimental results that extend this observation to forcing signals composed of a combination of two commensurable frequencies. The Faraday and Goodridge thresholds are characterized. Then a number of vertical bouncing modes are reported, including walkers. The vertical motion can become chaotic, in which case the horizontal motion is an alternation of walk and stop.

3.
Opt Lett ; 36(22): 4404-6, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22089578

RESUMO

An electric-field-assisted method to produce diffractive optical devices is demonstrated. A uniform film of liquid UV curable resin was produced as a drying ring from an organic solvent. Dielectrophoresis forces maintained the stability of the thin film and also imprinted a periodic corrugation deformation of pitch 20 µm on the film surface. Continuous in situ voltage-controlled adjustment of the optical diffraction pattern was carried out simultaneously with UV curing. A fully cured solid phase grating was produced with the particular voltage-selected tailored optical property that the zero transmitted order was suppressed for laser light at 633 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA