Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 16(7): 4641-7, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27294888

RESUMO

Near-infrared (NIR) absorption spectroscopy provides molecular and chemical information based on overtones and combination bands of the fundamental vibrational modes in the infrared wavelengths. However, the sensitivity of NIR absorption measurement is limited by the generally weak absorption and the relatively poor detector performance compared to other wavelength ranges. To overcome these barriers, we have developed a novel technique to simultaneously obtain chemical and refractive index sensing in 1-2.5 µm NIR wavelength range on nanoporous gold (NPG) disks, which feature high-density plasmonic hot-spots of localized electric field enhancement. For the first time, surface-enhanced near-infrared absorption (SENIRA) spectroscopy has been demonstrated for high sensitivity chemical detection. With a self-assembled monolayer (SAM) of octadecanethiol (ODT), an enhancement factor (EF) of up to ∼10(4) has been demonstrated for the first C-H combination band at 2400 nm using NPG disk with 600 nm diameter. Together with localized surface plasmon resonance (LSPR) extinction spectroscopy, simultaneous sensing of sample refractive index has been achieved for the first time. The performance of this technique has been evaluated using various hydrocarbon compounds and crude oil samples.

2.
J Biophotonics ; 8(10): 855-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25727212

RESUMO

We experimentally demonstrate a label-free biosensor for the ERBB2 cancer gene DNA target based on the distance-dependent detection of surface-enhanced fluorescence (SEF) on nanoporous gold disk (NPGD) plasmonic nanoparticles. We achieve detection of 2.4 zeptomole of DNA target on the NPGD substrate with an upper concentration detection limit of 1 nM. Without the use of molecular spacers, the NPGD substrate as an SEF platform was shown to provide higher net fluorescence for visible and NIR fluorophores compared to glass and non-porous gold substrates. The enhanced fluorescence signals in patterned nanoporous gold nanoparticles make NPGD a viable material for further reducing detection limits for biomolecular targets used in clinical assays. With patterned nanoporous gold disk (NPGD) plasmonic nanoparticles, a label-free biosensor that makes use of distance-dependent detection of surface-enhanced fluorescence (SEF) is constructed and tested for zeptomole detection of ERBB2 cancer gene DNA targets.


Assuntos
Biomarcadores Tumorais/análise , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Espectrometria de Fluorescência/métodos , Sequência de Bases , Biomarcadores Tumorais/química , Biomarcadores Tumorais/genética , Carbocianinas/química , DNA de Cadeia Simples/análise , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Hibridização de Ácido Nucleico , Enxofre/química , Propriedades de Superfície
3.
Nanoscale ; 6(21): 12470-5, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25204420

RESUMO

A novel laser rapid thermal annealing (LRTA) technique is reported to tune the plasmonic resonance of disk-shaped nanoporous gold (NPG) nanoparticles for the first time. LRTA alters both the external and internal geometrical parameters of NPG nanoparticles at temperatures significantly lower than the melting temperature of bulk gold or non-porous gold nanoparticles. With increasing annealing laser intensity, the average pore size increases, while the mean disk diameter decreases. These morphological changes lead to blueshifting of the localized surface plasmon resonance (LSPR), which subsequently fine-tunes the SERS performance by better aligning the excitation laser and Raman scattering wavelengths with the LSPR peak. This technique can provide an effective means to optimize NPG nanoparticles for various plasmonic applications such as photothermal conversion, light-gated molecular release, and molecular sensing.

4.
Nanoscale ; 6(11): 5718-24, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24789410

RESUMO

Nanoporous gold disks (NPGDs) with 400 nm diameter, 75 nm thickness, and 13 nm pores exhibit large specific surface area and effective photothermal light harvesting capability with a conversion efficiency of 56%. A potential application is demonstrated by light-gated, multi-step molecular release of the pre-adsorbed R6G fluorescent dye on arrayed NPGDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA