Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Metabolites ; 13(11)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37999255

RESUMO

Atherosclerosis (AS) is a metabolic disorder and the pre-stage of several cardiovascular diseases, including myocardial infarction, stroke, and angina pectoris. Early detection of AS can provide the opportunity for effective management and better clinical results, along with the prevention of further progression of the disease. In the current study, an untargeted and targeted metabolomic approach was used to identify possible metabolic signatures that have altered levels in AS patients. A total of 200 serum samples from individuals with AS and normal were analyzed via liquid chromatography-high-resolution mass spectrometry. Univariate and multivariate analysis approaches were used to identify differential metabolites. A group of metabolites associated with bile acids, amino acids, steroid hormones, and purine metabolism were identified that are capable of distinguishing AS-risk sera from normal. Further, the targeted metabolomics approach confirmed that six metabolites, namely taurocholic acid, cholic acid, cortisol, hypoxanthine, trimethylamine N-oxide (TMAO), and isoleucine, were found to be significantly upregulated, while the concentrations of glycoursodeoxycholic acid, glycocholic acid, testosterone, leucine, methionine, phenylalanine, tyrosine, and valine were found to be significantly downregulated in the AS-risk sera. The receiver operating characteristic curves of three metabolites, including cortisol, hypoxanthine, and isoleucine, showed high sensitivity and specificity. Taken together, these findings suggest cortisol, hypoxanthine, and isoleucine as novel biomarkers for the early and non-invasive detection of AS. Thus, this study provides new insights for further investigations into the prevention and management of AS.

2.
J Environ Sci Health B ; 58(4): 357-366, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37032589

RESUMO

This study was conducted to investigate the residual behavior and safety assessment of fenazaquin and metaflumizone in butterbur. The samples were periodically harvested, extracted using QuEChERS method, and determined by LC-MS/MS. The linearity of matrix-matched calibration curve was ≥0.99 for both compounds. The average recoveries of fenazaquin and metaflumizone at two fortification levels (0.01 and 0.1 mg kg-1) ranged from 86.6 to 97.2%. The relative standard deviation was <10%. After 7 days, the fenazaquin and metaflumizone initial residues in butterbur were dissipated to 79 and 78%, with the respective half-lives, 3.08 and 3.15 days. The proposed preharvest intervals (PHIs) for fenazaquin is recommended as twice treatment 14 days before harvest and metaflumizone twice treatment 7 days before harvest of butterbur. Risk assessment showed that the acceptable daily intake of fenazaquin and metaflumizone in butterbur was 0.004 and 0.029%, respectively. The respective theoretical maximum daily intakes of fenazaquin and metaflumizone were 58.74 and 15.15%, indicating negligible risk.


Assuntos
Resíduos de Praguicidas , Petasites , Cromatografia Líquida , Petasites/química , Espectrometria de Massas em Tandem/métodos , Resíduos de Praguicidas/análise
3.
Toxics ; 11(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36976984

RESUMO

In this study, the residual behavior and safety of cyantraniliprole and indoxacarb applied to wild garlic (Allium vineale) were investigated. Samples were harvested after treatments of 0, 3, 7, and 14 days, then were prepared and extracted following the QuEChERS method and analyzed by UPLC-MS/MS. The linearity (R2 ≥ 0.99) of the calibration curves was excellent for both compounds. The average recoveries of cyantraniliprole and indoxacarb at two spiking concentrations (0.01 and 0.1 mg/kg) ranged from 94.2% to 111.4%. The relative standard deviation value was below 10%. The initial concentrations of cyantraniliprole and indoxacarb in wild garlic were degraded to 75% and 93% after seven days. The average half-lives were 1.83 and 1.14 days for cyantraniliprole and indoxacarb, respectively. The preharvest intervals (PHIs) for the two pesticides in wild garlic are recommended as two treatments seven days before harvest. The safety assessment data indicated that the percent acceptable daily intakes of cyantraniliprole and indoxacarb were 0.3 × 10-4% and 6.7 × 10-2%, respectively, in wild garlic. The theoretical maximum daily intake value of cyantraniliprole was 9.80%, and that of indoxacarb was 60.54%. Both compounds' residues in wild garlic pose low health risks to consumers. The findings of the current investigation provide essential data for the safe use of cyantraniliprole and indoxacarb in wild garlic.

4.
Sci Rep ; 12(1): 4675, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304538

RESUMO

This study was performed to investigate the residual characteristics, safety assessment, and pre-harvest interval (PHI) of spiromesifen and chromafenozide in lettuce (Latuca sativa L.) and perilla (Perilla frutescens (L.) Britton) leaves. Samples were harvested periodically, extracted using QuEChERS method, and analyzed by LC-MS/MS. Average recoveries of spiromesifen and its metabolite BSN2060-enol and chromafenozide were ranged from 80.6 to 107.9%, with relative standard deviation < 10%. Spiromesifen and cromafenozide initial residues in lettuce were dissipated to 81.45 and 95.52% after 7 days, with half-lives of 2.89 and 1.69 days respectively. Values in perilla leaves were 76.68 and 61.27% after the same period, with half-lives of 4.25 and 6.30 days, respectively. Risk assessment results showed that %ADI (acceptable daily intake) of spiromesifen and chromafenozide was 6.83 and 0.56, in lettuce and 4.60 and 0.25% in perilla leaves, respectively. Theoretical maximum daily intakes of spiromesifen and chromafenozide were 67.49 and 3.43%, respectively, indicating that residues of both compounds pose no considerable health risks to consumers. This study provides data for setting maximum residue limits and PHIs for the safe use of spiromesifen and chromafenozide in lettuce and perilla.


Assuntos
Inseticidas , Perilla frutescens , Perilla , Resíduos de Praguicidas , Benzopiranos , Cromatografia Líquida , Hidrazinas , Inseticidas/análise , Lactuca , Resíduos de Praguicidas/análise , Compostos de Espiro , Espectrometria de Massas em Tandem
5.
Artigo em Inglês | MEDLINE | ID: mdl-31842379

RESUMO

As the variety of chemicals used in consumer products (CPs) has increased, concerns about human health risk have grown accordingly. Even though restrictive guidelines and regulations have taken place to minimize the risks, human exposure to these chemicals and their eco-compatibility has remained a matter of greater scientific concern over the years. A major challenge in understanding the reality of the exposure is the lack of available information on the increasing number of ingredients and additives in the products. Even when ingredients of CPs formulations are identified on the product containers, the concentrations of the chemicals are rarely known to consumers. In the present study, an integrated target/suspect/non-target screening procedure using liquid chromatography-high resolution mass spectrometry (LC-HRMS) with stepwise identification workflow was used for the identification of known, suspect, and unknown chemicals in CPs including cosmetics, personal care products, and washing agents. The target screening was applied to identify and quantify isothiazolinones and phthalates. Among analyzed CPs, isothiazolinones and phthalates were found in 47% and in 24% of the samples, respectively. The highest concentrations were 518 mg/kg for benzisothiazolone, 7.1 mg/kg for methylisothiazolinone, 2.0 mg/kg for diethyl phthalate, and 21 mg/kg for dimethyl phthalate. Suspect and non-target analyses yielded six tentatively identified chemicals across the products including benzophenone, ricinine, iodocarb (IPBC), galaxolidone, triethanolamine, and 2-(2H-Benzotriazol-2-yl)-4, 6-bis (1-methyl-1-phenylethyl) phenol. Our results revealed that selected CPs consistently contain chemicals from multiple classes. Excessive use of these chemicals in daily life can increase the risk for human health and the environment.


Assuntos
Qualidade de Produtos para o Consumidor , Cosméticos/análise , Ácidos Ftálicos/análise , Tiazóis/análise , Cromatografia Líquida , Monitoramento Ambiental , Espectrometria de Massas , República da Coreia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA