Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(5): 5534-5540, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343969

RESUMO

Green hydrogen, by definition, must be produced with renewable energy sources without using fossil fuels. To transform the energy system, we need a fully sustainable production of green and renewable energy as well as the introduction of such "solar fuels" to tackle the chemical storage aspect of renewable energies. Conventional electrolysis of water splitting into oxygen and hydrogen gases is a clean and nonfossil method, but the use of massive noble-metal electrodes makes it expensive. Direct photocatalytic hydrogen evolution in water is an ideal approach, but an industrial scale is not available yet. In this paper, we intend to introduce flavins as metal-free organic photosensitizers for photoinduced reduction processes. Specifically, a flavin photosensitizer was employed for the photocatalytic evolution of hydrogen gas in aqueous media. The ratio of photosensitizer to cocatalyst concentration has been found to affect the efficiency of the hydrogen evolution reaction. Since flavins are nature-inspired molecules (like vitamin B2) with easily tunable properties through structure modification, this family of compounds opens the door for new possibilities in sustainable green hydrogen production.

2.
ACS Omega ; 9(2): 2674-2686, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250358

RESUMO

The development of ambient-air-processable organic-inorganic halide perovskite solar cells (OIHPSCs) is a challenge necessary for the transfer of laboratory-scale technology to large-scale and low-cost manufacturing of such devices. Different approaches like additives, antisolvents, composition engineering, and different deposition techniques have been employed to improve the morphology of the perovskite films. Additives that can form Lewis acid-base adducts are known to minimize extrinsic impacts that trigger defects in ambient air. In this work, we used the 3-thiophenemalonic acid (3-TMA) additive, which possesses thiol and carboxyl functional groups, to convert PbI2, PbCl2, and CH3NH3I to CH3NH3PbI3 completely. This strategy is effective in regulating the kinetics of crystallization and improving the crystallinity of the light-absorbing layer under high relative humidity (RH) conditions (30-50%). As a result, the 3-TMA additive increases the yield of the power conversion efficiency (PCE) from 14.9 to 16.5% and its stability under the maximum power point. Finally, we found that the results of this work are highly relevant and provide additional inputs to the ongoing research progress related to additive engineering as one of the efficient strategies to reduce parasitic recombination and enhance the stability of inverted OIHPSCs in ambient environment processing.

3.
Glob Chall ; 7(9): 2300062, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37745829

RESUMO

Four pinaceae pine resins analyzed in this study: black pine, shore pine, Baltic amber, and rosin demonstrate excellent dielectric properties, outstanding film forming, and ease of processability from ethyl alcohol solutions. Their trap-free nature allows fabrication of virtually hysteresis-free organic field effect transistors operating in a low voltage window with excellent stability under bias stress. Such green constituents represent an excellent choice of materials for applications targeting biocompatibility and biodegradability of electronics and sensors, within the overall effort of sustainable electronics development and environmental friendliness.

4.
Catal Sci Technol ; 13(3): 834-843, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36760341

RESUMO

When studying electrochemical oxygen reduction reactions in homogeneous media, special attention must be given to the significant background activity present with conventional electrode materials. The intrinsic electrocatalytic activity of different materials can be investigated using complementary methods, such as the rotating ring-disc electrode (RRDE) technique and chronoamperometric electrolysis with product quantification. This report presents a detailed investigation of the electrocatalytic ability of hydroxy anthraquinone derivatives and riboflavin towards hydrogen peroxide (H2O2) production via a novel RRDE subtraction method together with chronoamperometric electrolysis. Qualitative trends linking the two methods were obtained, such as a higher excess current correlating with both higher productivity and selectivity. As such, a valuable tool is provided to increase the understanding of the electrocatalytic ability of homogeneous solutions toward improving the oxygen reduction reaction.

5.
Adv Mater ; 35(5): e2208061, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36305028

RESUMO

Incorporating large organic cations to form 2D and mixed 2D/3D structures significantly increases the stability of perovskite solar cells. However, due to their low electron mobility, aligning the organic sheets to ensure unimpeded charge transport is critical to rival the high performances of pure 3D systems. While additives such as methylammonium chloride (MACl) can enable this preferential orientation, so far, no complete description exists explaining how they influence the nucleation process to grow highly aligned crystals. Here, by investigating the initial stages of the crystallization, as well as partially and fully formed perovskites grown using MACl, the origins underlying this favorable alignment are inferred. This mechanism is studied by employing 3-fluorobenzylammonium in quasi-2D perovskite solar cells. Upon assisting the crystallization with MACl, films with a degree of preferential orientation of 94%, capable of withstanding moisture levels of 97% relative humidity for 10 h without significant changes in the crystal structure are achieved. Finally, by combining macroscopic, microscopic, and spectroscopic studies, the nucleation process leading to highly oriented perovskite films is elucidated. Understanding this mechanism will aid in the rational design of future additives to achieve more defect tolerant and stable perovskite optoelectronics.

6.
Turk J Chem ; 47(5): 1169-1182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173751

RESUMO

We demonstrate in this work the practical use of uniform mixtures of a bioresin shellac and four natural clays, i.e. montmorillonite, sepiolite, halloysite and vermiculate as dielectrics in organic field effect transistors (OFETs). We present a thorough characterization of their processability and film forming characteristic, surface characterization, elaborate dielectric investigation and the fabrication of field effect transistors with two classic organic semiconductors, i.e. pentacene and fullerene C60. We show that low operating voltage of approximately 4 V is possible for all the OFETs using several combinations of clays and shellac. The capacitance measurements show an improvement of the dielectric constant of shellac by a factor of 2, to values in excess of 7 in the uniform mixtures of sepiolite and montmorillonite with this bioresin.

7.
Anal Sci Adv ; 4(11-12): 335-346, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38715649

RESUMO

Surface-enhanced Raman scattering (SERS) is a sensitive and fast technique for sensing applications such as chemical trace analysis. However, a successful, high-throughput practical implementation necessitates the availability of simple-to-use and economical SERS substrates. In this work, we present a robust, reproducible, flexible and yet cost-effective SERS substrate suited for the sensitive detection of analytes at near-infrared (NIR) excitation wavelengths. The fabrication is based on a simple dropcast deposition of silver or gold nanomaterials on an aluminium foil support, making the design suitable for mass production. The fabricated SERS substrates can withstand very high average Raman laser power of up to 400 mW in the NIR wavelength range while maintaining a linear signal response of the analyte. This enables a combined high signal enhancement potential provided by (i) the field enhancement via the localized surface plasmon resonance introduced by the noble metal nanomaterials and (ii) additional enhancement proportional to an increase of the applicable Raman laser power without causing the thermal decomposition of the analyte. The application of the SERS substrates for the trace detection of melamine and rhodamine 6G is demonstrated, which shows limits of detection smaller than 0.1 ppm and analytical enhancement factors on the order of 104 as compared to bare aluminium foil.

8.
J Phys Chem C Nanomater Interfaces ; 126(33): 14138-14154, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36051252

RESUMO

Electrochemical capture of carbon dioxide (CO2) using organic quinones is a promising and intensively studied alternative to the industrially established scrubbing processes. While recent studies focused only on the influence of substituents having a simple mesomeric or nucleophilicity effect, we have systematically selected six anthraquinone (AQ) derivatives (X-AQ) with amino and hydroxy substituents in order to thoroughly study the influence thereof on the properties of electrochemical CO2 capture. Experimental data from cyclic voltammetry (CV) and UV-Vis spectroelectrochemistry of solutions in acetonitrile were analyzed and compared with innovative density functional tight binding computational results. Our experimental and theoretical results provide a coherent explanation of the influence of CO2 on the CV data in terms of weak and strong binding nomenclature of the dianions. In addition to this terminology, we have identified the dihydroxy substituted AQ as a new class of molecules forming rather unstable [X-AQ-(CO2) n ]2- adducts. In contrast to the commonly used dianion consideration, the results presented herein reveal opposite trends in stability for the X-AQ-CO2 •- radical species for the first time. To the best of our knowledge, this study presents theoretically calculated UV-Vis spectra for the various CO2-AQ reduction products for the first time, enabling a detailed decomposition of the spectroelectrochemical data. Thus, this work provides an extension of the existing classification with proof of the existence of X-AQ-CO2 species, which will be the basis of future studies focusing on improved materials for electrochemical CO2 capture.

9.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955800

RESUMO

Millions of people worldwide are diagnosed with retinal dystrophies such as retinitis pigmentosa and age-related macular degeneration. A retinal prosthesis using organic photovoltaic (OPV) semiconductors is a promising therapeutic device to restore vision to patients at the late onset of the disease. However, an appropriate cytotoxicity approach has to be employed on the OPV materials before using them as retinal implants. In this study, we followed ISO standards to assess the cytotoxicity of D18, Y6, PFN-Br and PDIN individually, and as mixtures of D18/Y6, D18/Y6/PFN-Br and D18/Y6/PDIN. These materials were proven for their high performance as organic solar cells. Human RPE cells were put in direct and indirect contact with these materials to analyze their cytotoxicity by the MTT assay, apoptosis by flow cytometry, and measurements of cell morphology and proliferation by immunofluorescence. We also assessed electrophysiological recordings on mouse retinal explants via microelectrode arrays (MEAs) coated with D18/Y6. In contrast to PFN-Br and PDIN, all in vitro experiments show no cytotoxicity of D18 and Y6 alone or as a D18/Y6 mixture. We conclude that D18/Y6 is safe to be subsequently investigated as a retinal prosthesis.


Assuntos
Retinose Pigmentar , Próteses Visuais , Animais , Eletrodos Implantados , Humanos , Camundongos , Microeletrodos , Retina
10.
Nanomaterials (Basel) ; 12(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808100

RESUMO

Strategies for production and use of nanomaterials have rapidly moved towards safety and sustainability. Beyond these requirements, the novel routes must prove to be able to preserve and even improve the performance of the resulting nanomaterials. Increasing demand of high-performance nanomaterials is mostly related to electronic components, solar energy harvesting devices, pharmaceutical industries, biosensors, and photocatalysis. Among nanomaterials, Zinc oxide (ZnO) is of special interest, mainly due to its environmental compatibility and vast myriad of possibilities related to the tuning and the enhancement of ZnO properties. Doping plays a crucial role in this scenario. In this work we report and discuss the properties of undoped ZnO as well as lanthanide (Eu, Tb, and La)-doped ZnO nanoparticles obtained by using whey, a by-product of milk processing, as a chelating agent, without using citrate nor any other chelators. The route showed to be very effective and feasible for the affordable large-scale production of both pristine and doped ZnO nanoparticles in powder form.

11.
Phys Chem Chem Phys ; 24(26): 16207-16219, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35757985

RESUMO

Anthraquinone (AQ) has long been identified as a highly promising lead structure for various applications in organic electronics. Considering the enormous number of possible substitution patterns of the AQ lead structure, with only a minority being commercially available, a systematic experimental screening of the associated electrochemical potentials represents a highly challenging and time consuming task, which can be greatly enhanced via suitable virtual pre-screening techniques. In this work the calculated electrochemical reduction potentials of pristine AQ and 12 hydroxy- or/and amino-substituted AQ derivatives in N,N-dimethylformamide have been correlated against newly measured experimental data. In addition to the calculations performed using density functional theory (DFT), the performance of different semi-empirical density functional tight binding (DFTB) approaches has been critically assessed. It was shown that the SCC DFTB/3ob parametrization in conjunction with the COSMO solvation model provides a highly adequate description of the electrochemical potentials also in the case of the two-fold reduced species. While the quality in the correlation against the experimental data proved to be slightly inferior compared to the employed DFT approach, the highly advantageous cost-accuracy ratio of the SCC DFTB/3ob/COSMO framework has important implications in the formulation of hierarchical screening strategies for materials associated with organic electronics. Based on the observed performance, the low-cost method provides sufficiently accurate results to execute efficient pre-screening protocols, which may then be followed by a DFT-based refinement of the best candidate structures to facilitate a systematic search for new, high-performance organic electronic materials.


Assuntos
Antraquinonas , Oxirredução
12.
Materials (Basel) ; 14(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806446

RESUMO

Conjugated donor-acceptor molecules with intramolecular charge transfer absorption are employed for single-component organic solar cells. Among the five types of donor-acceptor molecules, the strong push-pull structure of DTDCPB resulted in solar cells with high JSC, an internal quantum efficiency exceeding 20%, and high VOC exceeding 1 V with little photon energy loss around 0.7 eV. The exciton binding energy (EBE), which is a key factor in enhancing the photocurrent in the single-component device, was determined by quantum chemical calculation. The relationship between the photoexcited state and the device performance suggests that the strong internal charge transfer is effective for reducing the EBE. Furthermore, molecular packing in the film is shown to influence photogeneration in the film bulk.

13.
Sci Technol Adv Mater ; 22(1): 985-997, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992500

RESUMO

We set out to demonstrate the development of a highly conductive polymer based on poly-(3,4-ethylenedithia thiophene) (PEDTT), PEDOTs structural analogue historically notorious for structural disorder and limited conductivities. The caveat therein was previously described to lie in intra-molecular repulsions. We demonstrate how a tremendous >2600-fold improvement in conductivity and metallic features, such as magnetoconductivity can be achieved. This is achieved through a careful choice of the counter-ion (sulphate) and the use of oxidative chemical vapour deposition (oCVD). It is shown that high structural order on the molecular level was established and the formation of crystallites tens of nanometres in size was achieved. We infer that the sulphate ions therein intercalate between the polymer chains, thus forming densely packed crystals of planar molecules with extended π-systems. Consequently, room-temperature conductivities of above 1000 S cm-1 are achieved, challenging those of conventional PEDOT:PSS. The material is in the critical regime of the metal-insulator transition.

14.
Adv Sci (Weinh) ; 7(24): 2002586, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344134

RESUMO

X-ray detectors play a pivotal role in development and advancement of humankind, from far-reaching impact in medicine to furthering the ability to observe distant objects in outer space. While other electronics show the ability to adapt to flexible and lightweight formats, state-of-the-art X-ray detectors rely on materials requiring bulky and fragile configurations, severely limiting their applications. Lead halide perovskites is one of the most rapidly advancing novel materials with success in the field of semiconductor devices. Here, an ultraflexible, lightweight, and highly conformable passively operated thin film perovskite X-ray detector with a sensitivity as high as 9.3 ± 0.5 µC Gy-1 cm-2 at 0 V and a remarkably low limit of detection of 0.58 ± 0.05 µGy s-1 is presented. Various electron and hole transporting layers accessing their individual impact on the detector performance are evaluated. Moreover, it is shown that this ultrathin form-factor allows for fabrication of devices detecting X-rays equivalently from front and back side.

15.
Molecules ; 26(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374613

RESUMO

A series of novel soluble nature-inspired flavin derivatives substituted with short butyl and bulky ethyl-adamantyl alkyl groups was prepared via simple and straightforward synthetic approach with moderate to good yields. The comprehensive characterization of the materials, to assess their application potential, has demonstrated that the modification of the conjugated flavin core enables delicate tuning of the absorption and emission properties, optical bandgap, frontier molecular orbital energies, melting points, and thermal stability. Moreover, the thin films prepared thereof exhibit smooth and homogeneous morphology with generally high stability over time.


Assuntos
Alquilantes/química , Riboflavina/química , Semicondutores , Alquilação
16.
ACS Appl Energy Mater ; 3(11): 10611-10618, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33251486

RESUMO

In this report, we present results on the electrocatalytic activity of conducting polymers [polyaniline (PANI) and polypyrrole (PPy)] toward the electrochemical oxygen reduction reaction (ORR) to hydrogen peroxide (H2O2). The electropolymerization of the polymers and electrolysis conditions were optimized for H2O2 production. On flat glassy carbon (GC) electrodes, the faradaic efficiency (FE) for H2O2 production was significantly improved by the polymers. Rotating disc electrode (RDE) studies revealed that this is mainly a result of blocking further H2O2 to the water reduction pathway by the polymers. PPy on carbon paper (CP) significantly increased the molar production of H2O2 by over 250% at an average FE of above 95% compared to bare CP with a FE of 25%. Thus, the polymers are acting as catalysts on the electrode for the ORR, although their catalytic mechanisms differ from other electrocatalysts.

17.
Sci Rep ; 10(1): 15720, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973262

RESUMO

This work reports on an optimized procedure to synthesize methylammonium bromide perovskite nanoparticles. The ligand-assisted precipitation synthetic pathway for preparing nanoparticles is a cost-effective and promising method due to its ease of scalability, affordable equipment requirements and convenient operational temperatures. Nevertheless, there are several parameters that influence the resulting optical properties of the final nanomaterials. Here, the influence of the choice of solvent system, capping agents, temperature during precipitation and ratios of precursor chemicals is described, among other factors. Moreover, the colloidal stability and stability of the precursor solution is studied. All of the above-mentioned parameters were observed to strongly affect the resulting optical properties of the colloidal solutions. Various solvents, dispersion media, and selection of capping agents affected the formation of the perovskite structure, and thus qualitative and quantitative optimization of the synthetic procedure conditions resulted in nanoparticles of different dimensions and optical properties. The emission maxima of the nanoparticles were in the 508-519 nm range due to quantum confinement, as confirmed by transmission electron microscopy. This detailed study allows the selection of the best optimal conditions when using the ligand-assisted precipitation method as a powerful tool to fine-tune nanostructured perovskite features targeted for specific applications.

18.
ACS Appl Mater Interfaces ; 12(41): 46530-46538, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32940032

RESUMO

Nanostructure incorporation into devices plays a key role in improving performance, yet processes for preparing two-dimensional (2D) arrays of colloidal nanoparticles tend not to be universally applicable, particularly for soft and oxygen-sensitive substrates for organic and perovskite-based electronics. Here, we show a method of transferring reverse micelle-deposited (RMD) nanoparticles (perovskite and metal oxide) on top of an organic layer, using a functionalized graphene carrier layer for transfer printing. As the technique can be applied universally to RMD nanoparticles, we used magnetic (γ-Fe2O3) and luminescent (methylammonium lead bromide (MAPbBr3)) nanoparticles to validate the transfer-printing methodology. The strong photoluminescence from the MAPbBr3 under UV illumination and high intrinsic field of the γ-Fe2O3 as measured by magnetic force microscopy (MFM), coupled with Raman measurements of the graphene layer, confirm that all components survive the transfer-printing process with little loss of properties. Such an approach to introducing uniform 2D arrays of nanoparticles onto sensitive substrates opens up new avenues to tune the device interfacial properties.

19.
Nanoscale ; 12(31): 16556-16561, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32743623

RESUMO

Photon cooling via anti-Stokes photoluminescence (ASPL) is a promising approach to realize all-solid-state cryo-refrigeration by photoexcitation. Photoluminescence quantum yields close to 100% and a strong coupling between phonons and excited states are required to achieve net cooling. We have studied the anti-Stokes photoluminescence of thin films of methylammonium lead bromide nanoparticles. We found that the anti-Stokes photoluminescence is thermally activated with an activation energy of ∼80 meV. At room temperature the ASPL up-conversion efficiency is ∼60% and it depends linearly on the excitation intensity. Our results suggest that upon further optimization of their optical properties, the investigated particles could be promising candidates for the demonstration of photon cooling in thin solid films.

20.
ACS Appl Mater Interfaces ; 12(29): 32615-32621, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32573248

RESUMO

Mechanically interlocking redox-active anthraquinone onto single-walled carbon nanotubes (AQ-MINT) gives a new and advanced example of a noncovalent architecture for an electrochemical platform. Electrochemical studies of AQ-MINT as an electrode reveal enhanced electrochemical stability in both aqueous and organic solvents compared to physisorbed AQ-based electrodes. While maintaining the electrochemical properties of the parent anthraquinone molecules, we observe a stable oxygen reduction reaction to hydrogen peroxide (H2O2). Using such AQ-MINT electrodes, 7 and 2 µmol of H2O2 are produced over 8 h under basic and neutral conditions, while the control system of SWCNTs produces 2.2 and 0.5 µmol, respectively. These results reveal the potential of this rotaxane-type immobilization approach for heterogenized electrocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA