Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 24(4): 124, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995459

RESUMO

Exosomes are lipid-bilayered vesicles, originating from early endosomes that capture cellular proteins and genetic materials to form multi-vesicular bodies. These exosomes are secreted into extracellular fluids such as cerebrospinal fluid, blood, urine, and cell culture supernatants. They play a key role in intercellular communication by carrying active molecules like lipids, cytokines, growth factors, metabolites, proteins, and RNAs. Recently, the potential of exosomal delivery for therapeutic purposes has been explored due to their low immunogenicity, nano-scale size, and ability to cross cellular barriers. This review comprehensively examines the biogenesis of exosomes, their isolation techniques, and their diverse applications in theranostics. We delve into the mechanisms and methods for loading exosomes with mRNA, miRNA, proteins, and drugs, highlighting their transformative role in delivering therapeutic payloads. Additionally, the utility of exosomes in stem cell therapy is discussed, showcasing their potential in regenerative medicine. Insights into exosome cargo using pre- or post-loading techniques are critical for exosome theranostics. We review exosome databases such as ExoCarta, Expedia, and ExoBCD, which document exosome cargo. From these databases, we identified 25 proteins common to both exosomes and P-bodies, known for mutations in the COSMIC database. Exosome databases do not integrate with mutation analysis programs; hence, we performed mutation analysis using additional databases. Accounting for the mutation status of parental cells and exosomal cargo is crucial in exosome theranostics. This review provides a comprehensive report on exosome databases, proteins common to exosomes and P-bodies, and their mutation analysis, along with the latest studies on exosome-engineered theranostics.


Assuntos
Exossomos , Mutação , Exossomos/metabolismo , Exossomos/genética , Humanos , Animais
2.
3 Biotech ; 9(3): 88, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30800599

RESUMO

This study evaluates the protective effect of astaxanthin against dichlorvos cytotoxicity in yeast Saccharomyces cerevisiae. Dichlorvos induce a dose-dependent cytotoxicity in yeast cells, which is mediated by oxidative stress. Our experimental results showed pre-treatment with astaxanthin enhances cell viability by 20-30% in yeast cells exposed to dichlorvos. A decrease in DCF fluorescence intensity and lipid peroxidation, increased SOD activity, and glutathione levels in astaxanthin-treated cells indicate that astaxanthin protected the cells against dichlorvos-induced oxidative stress. Reduced chromatin condensation and nuclear fragmentation in astaxanthin pre-treated cells also indicate that astaxanthin rescued the cells from dichlorvos-induced apoptosis. Our overall results suggest that dichlorvos induces oxidative stress-mediated cytotoxicity in yeast cells, and that was rescued by astaxanthin pre-treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA