Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5756, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717065

RESUMO

Decarbonising energy systems is a prevalent topic in the current literature on climate change mitigation, but the additional climate burden caused by methane emissions along the natural gas value chain is rarely discussed at the system level. Considering a two-basket greenhouse gas neutrality objective (both CO2 and methane), we model cost-optimal European energy transition pathways towards 2050. Our analysis shows that adoption of best available methane abatement technologies can entail an 80% reduction in methane leakage, limiting the additional environmental burden to 8% of direct CO2 emissions (vs. 35% today). We show that, while renewable energy sources are key drivers of climate neutrality, the role of natural gas strongly depends on actions to abate both associated CO2 and methane emissions. Moreover, clean hydrogen (produced mainly from renewables) can replace natural gas in a substantial proportion of its end-uses, satisfying nearly a quarter of final energy demand in a climate-neutral Europe.

2.
Resour Conserv Recycl ; 163: 105072, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32834490

RESUMO

This article aims to assess the impact of copper availability on the energy transition and to determine whether copper could become critical due to the high copper content of low-carbon technologies compared to conventional technologies. In assessing copper availability through to 2050, we rely on our linear programming world energy-transport model, TIAM-IFPEN. We examine two climate scenarios (2 °C and 4 °C) with two mobility shape, implemented with a recycling chain. The penetration of low-carbon technologies in the transport and energy sectors (electric vehicles and low-carbon power generation technologies) is likely to significantly increase copper demand by 2050. To investigate how tension over copper resources can be reduced in the energy transition context, we consider two public policy drivers: sustainable mobility and recycling practices. Results show that in the most stringent scenario, the cumulative primary copper demand between 2010 and 2050 is found to be 89.4% of the copper resources known in 2010. They also pinpoint the importance of China and Chile in the future evolution of the copper market.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA