Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 953: 175928, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39226953

RESUMO

Critical soil suctions (threshold, tipping point, and permanent wilting) corresponding to initial drought response, near-death stage, and complete mortality, respectively; is essential for formulating irrigation schemes of vegetation grown in compacted soil under drought conditions. The effect of soil types on these critical soil suctions are unexplored and is crucial in understanding the soil-specific plant water functions. This study aims to establish the drought response of Axonopus compressus (grass), based on stomatal conductance (gs) and chlorophyll fluorescence parameters (CI) grown in different soil types. A. compressus were grown in six soil types (2 coarse-grained and 4 fine-grained soils) for 8 weeks, followed by continued drought condition. The gs and CI were monitored along with soil suction and moisture content. Both leaf and root growth were observed to be higher in coarse-grained soils than fine-grained soils, even though the water retention of the coarse-grained soils were comparatively less. Drought stress initiation in plants was captured by ψthreshold from the CI (especially in fine-grained soils) before the gs response. The three critical soil suctions estimated from the correlation between CI and ψ were found to be increasing with higher soil clay fraction. Corresponding plant available water contents (based on v/v volumetric water content) with each of three critical soil suctions were found to be dependent on the relative growth of canopy to root growth that occurred in different soil medias. Especially, plant available water in 'tipping suction' was dependent on the soil clay fraction (i.e., higher fraction could restrict root water uptake) and is presented with a simple empirical correlation for A. compressus.


Assuntos
Secas , Poaceae , Solo , Solo/química , Poaceae/fisiologia , Hidrologia , Água
2.
Environ Pollut ; 355: 124255, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38815894

RESUMO

Polylactic Acid (PLA) based compostable bioplastic films degrade under thermophilic composting conditions. The purpose of our study was to understand whether sample pre-treatment along with bioaugmentation of the degradation matrix could reduce the biodegradation time under a simulated composting environment. Sepcifically, we also explored whether the commercial composts could be replaced by landfill-mined soil-like fraction (LMSF) for the said application. The effect of pre-treatment on the material was analysed by tests like tensile strength analysis, hydrophobicity analysis, morphological analysis, thermal degradation profiling, etc. Subsequently, the degradation experiment was performed in a simulated composting environment following the ASTM D5338 standard, along with bioaugmentation in selected experimental setups. When the novel approach of material pre-treatment and bioaugmentation were applied in combination, the time necessary for 90% degradation was reduced by 27% using compost and by 23% using LMSF. Beyond the improvement in degradation rate, the water holding capacity increased significantly for the degradation matrices. With pH, C: N ratio and microbial diversity tested to be favourable through 16s metabarcoding studies, material pre-treatment and bioaugmentation allow LMSF to not only replace commercial compost in polymer degradation but also find immense application in the agricultural sector of drought-affected areas (for better water retention) after it has been used for PLA degradation.


Assuntos
Agricultura , Biodegradação Ambiental , Compostagem , Solo , Instalações de Eliminação de Resíduos , Compostagem/métodos , Solo/química , Biopolímeros , Agricultura/métodos , Microbiologia do Solo , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Poliésteres/química , Poliésteres/metabolismo , Eliminação de Resíduos/métodos
3.
Sci Total Environ ; 895: 164864, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331385

RESUMO

The soil-insect interaction has gathered significant attention in the recent years due to its contribution to bio-cementation. Termites, as a group of cellulose-eating insects, alter physical (texture) and chemical (chemical composition) properties of soil. Conversely, physico-chemical properties of soil also influence termite activities. It is vital to understand the soil-termite interaction and their influence on hydraulic properties and shear strength of soil, which are related to a series of geotechnical engineering problems such as ground water recharge, runoff, erosion and stability of slopes. In this study, an attempt has been made to review the latest developments and research gaps in our understanding of soil-termite interaction within the context of geo-environmental engineering. The hydraulic properties and shear strength of termite modified soil were discussed with respect to soil texture, density and physico-chemical composition. The incorporation of hysteresis effect of soil water characteristic curve, and spatio-temporal variations of hydraulic conductivity and shear strength of termite modified soil is proposed to be considered in geotechnical engineering design and construction. Finally, the challenges and future trends in this research area are presented. The expertise from both geotechnical engineering and entomology is needed to plan future research with an aim to promote use of termites as maintenance engineers in geotechnical infrastructure.

4.
Sci Total Environ ; 851(Pt 2): 158311, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037904

RESUMO

Growing demand for plastic and increasing plastic waste pollution have led to significant environmental challenges and concerns in today's world. Bioplastics offer exciting new opportunities and possibilities where biodegradable and bio-based plastics are expected to be more eco-friendly and rely on renewable resources. With all its promises, evaluating its real impact and fate on the geoenvironment is paramount for promoting bioplastic use. This paper presents a systematic literature review to understand current bioplastic-soil research and the effects of its residues on the geoenvironment. 632 studies related to bioplastic research in soil since 1973 were identified and categorized into different relevant topics. Publication trend showed bioplastic-soil research grew exponentially after 2010 wherein field studies accounted to 33.1 % of the total studies and only about 9.7 % studied the effects of bioplastic residues on the geoenvironment. Majority of the lab studies were on development and subsequent stability of bioplastics in soil. Short-term studies (in months) dominated the longer-term studies and studies over 4 years were almost non-existent. Lab and field experiments often gave inconsistent results with seasonal, climatic and bio-geographical factors strongly influencing the field results and bioplastic stability in soil. Most existing studies reported significant effects for microbioplastic concentrations at or above 1 % w/w. Bioplastic residues were found to substantially affect soil C/N ratio, impact soil microbial diversity by favouring certain microbial taxa and alter soil physical structure by influencing soil aggregates formation. At higher concentrations, plant health and germination success were also negatively affected. Conclusively, the review found it important to focus more on long-term field experiments to better understand the degree and extent of bioplastic residue impact on soil physico-chemical properties, mechanical properties, soil biology, soil-bioplastic-plant response, nutrients and toxicity. There are also very few studies investigating contaminant transport and migration of micro or nano-bioplastics in soil.


Assuntos
Plásticos , Solo , Plásticos/toxicidade , Plásticos/química , Poluição Ambiental
5.
Sci Total Environ ; 833: 155253, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35429570

RESUMO

The function of engineered thermal backfills surrounding underground pipelines of the crude oil industry is to prohibit heat migration for the design period of 25 to 50 years. Biochar is suitable for reconstituting standard thermal backfill material since it is biochemically inert and has a low heat conductivity. However, the preparation of biochar from biomass involves an energy-intensive pyrolysis process. This study aims to make biochar production energy-efficient via optimizing the pyrolysis temperatures, specifically for thermal backfill applications. Ten distinct biochars were prepared by pyrolyzing two waste biomass, i.e., water hyacinth (WH) and sugarcane bagasse (SB), at temperatures ranging from 300 to 700 °C. The biochars were assessed based on their thermal conductivity, energy consumption, yield, and stability in soil for the design period. The thermal conductivity of produced biochars varied in a narrow range of 0.10 to 0.13 W m-1 K-1 with different pyrolysis temperatures, which is possibly due to marginal differences in their microstructure, mineralogy, and physicochemical properties. The findings revealed that the biochar produced at lowest pyrolysis temperature (300 °C) consumed least energy and produced maximum yield. However, it was not suitable for thermal backfill applications due to its inadequate carbon stability in soil. Therefore, the current study recommends a pyrolysis temperature of 400 °C for thermal backfill applications. The recommended pyrolysis temperature was found to be at least 60% energy efficient in comparison to pyrolysis at 700 °C for both the feedstocks. This study provides crucial insight into the role of pyrolysis temperature for tailoring biochar production for intended applications.


Assuntos
Celulose , Saccharum , Carvão Vegetal/química , Solo/química , Temperatura
6.
Sci Total Environ ; 804: 150251, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34798756

RESUMO

Sustainable biomaterials such as natural fibers and biochars have been increasingly used in green infrastructures such as landfill covers for its dual-advantages of climate change mitigation and waste management. The existing studies did not systematically discuss the comparison on how biochar (stable carbon) and fiber (likely degradable), influence plant growth and water retention abilities in unsaturated soils. Also, the effect of photochemistry in the amended soils has rarely been investigated. This study addresses the limitations of previous investigations by exploring plant parameters such as photochemical yield, stomatal conductance, root area index, and unsaturated soil hydraulic parameters, including soil water retention curves (SWRC) of amended soils. Pot experiments were conducted in an environmentally controlled greenhouse. Two biochars from different plant-based feedstocks (Eichhornia crassipes, Prosopis juliflora) and one natural fiber (coir pith fiber) were mixed with soil at 5% and 10% application rate (by weight). Grass species of Axonopus compressus was planted to study the effects of different amendment materials and its corresponding plant responses during an applied drought period. The test results show that biochar amended soils increased the shoot growth by up to 100-200%. The stomatal conductance of the grass leaves increased by 54%-101% during the drought period for both biochars and coir amended soil. Furthermore, at low suction, the coir had a high water retention capacity than the biochars, explaining the observed higher stomatal conductance values. Importantly, it was discovered that the plant photochemical quantum yield responses associated with plant wilting was found to vary between 1500 and 1800 kPa for all the soil treatments. The study concludes with a newly developed mathematical expression based on the measurements of plant parameters and soil suction. The new equation could be used to optimize the irrigation frequency in order to apply any informed measures to maintain green infrastructures.


Assuntos
Poluentes do Solo , Solo , Carvão Vegetal , Desenvolvimento Vegetal , Poluentes do Solo/análise , Água
7.
Sci Total Environ ; 758: 143683, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33279187

RESUMO

A multi-layered final cover system is constructed over the landfill after it reaches its full capacity to minimize water ingress into the underlying hazardous waste. Three layered landfill cover are designed for areas experiencing very humid climatic conditions. Under the effects of climate change, the occurrences of extreme rainfall events become more frequent and this has resulted in catastrophic floods and hence extreme ponding. This study investigates the seepage characteristics of three-layered capillary barrier cover systems under an extreme ponding condition of 1.5 m water head, through detailed laboratory column tests and finite-element seepage analysis. Four 1.2 m-tall columns having different configurations (C1-C4) were studied. Fly ash (FA) was used to amend the surface and barrier layers in columns C2 and C4, in line with the novel concept of "waste protect waste". Spatiotemporal variations of volumetric water content of the four columns were monitored for three years continuously. With FA amendment in the surface layer and an inclusion of a 0.01 m thick geosynthetic clay liner between the drainage and barrier layers, the onset of basal percolation was significantly delayed until 700 days of ponding, compared to 115 days without FA amendment. Capillary flow dominated the gravitational flow and perched water table was formed as waterfront advanced from the drainage to barrier layers. Further seepage analysis considering a realistic humid climate boundary condition showed that all four configurations were successful in preventing basal percolation for 800 days.

8.
Sci Rep ; 10(1): 22064, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328549

RESUMO

Permanent wilting point (PWP) is generally used to ascertain plant resistance against abiotic drought stress and designated as the soil water content (θ) corresponding to soil suction (ψ) at 1500 kPa obtained from the soil water retention curve. Determination of PWP based on only pre-assumed ψ may not represent true wilting condition for soils with contrasting water retention abilities. In addition to ψ, there is a need to explore significance of additional plant parameters (i.e., stomatal conductance and photosynthetic status) in determining PWP. This study introduces a new framework for determining PWP by integrating plant leaf response and ψ during drought. Axonopus compressus were grown in two distinct textured soils (clayey loam and silty sand), after which drought was initiated till wilting. Thereafter, ψ and θ within the root zone were measured along with corresponding leaf stomatal conductance and photosynthetic status. It was found that coarse textured silty sand causes wilting at much lower ψ (≈ 300 kPa) than clayey loam (≈ 1600 kPa). Plant response to drought was dependent on the relative porosity and mineralogy of the soil, which governs the ease at which roots can grow, assimilate soil O2, and uptake water. For clay loam, the held water within the soil matrix does not facilitate easy root water uptake by relatively coarse root morphology. Contrastingly, fine root hair formation in silty sand facilitated higher plant water uptake and doubled the plant survival time.


Assuntos
Fotossíntese , Folhas de Planta/metabolismo , Poaceae/crescimento & desenvolvimento , Solo , Estresse Fisiológico , Raízes de Plantas/metabolismo
9.
Sci Rep ; 10(1): 18664, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122792

RESUMO

Securing water in the soil through suitable amendments is one of the methods for drought management in arid regions. In this study, a poor water sorbing fly ash was transformed into a high water-absorbing material for improving soil water retention during the drought period. The fly ash water absorbent (FAWA) exhibited high water-absorbing capacity (WAC) of 310 g/g at par with commercially available superabsorbent hydrogel (SAH). The FAWA showed excellent re-swelling behavior for more than eight alternate wetting-drying cycles. The WAC of FAWA was sensitive to salt type, pH, and ionic strength of the solution. At maximum salinity level permitted for plant growth, the WAC of FAWA was 80 g/g indicating its suitability for drought management. There was only a marginal WAC variation in the range of pH (5.5-7.5) considered most suitable for plant growth. The drying characteristics of FAWA amended soil exhibited an increase in desaturation time by 3.3, 2.2, and 1.5 times for fine sand, silt loam, and clay loam, respectively. The study demonstrates the success of using a low rate of FAWA for drought management with the advantage of offering a non-toxic and eco-friendly solution to mass utilization of industrial solid waste for agricultural applications.

10.
Environ Pollut ; 265(Pt A): 114811, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32512424

RESUMO

Multi-layered engineered landfill consists of the bottom liner layer (mainly bentonite clay (B)) upon which the hazardous wastes are dumped. In current practice, sand (S) is mixed with bentonite to mitigate the adverse effects of using bentonite alone in the liner layer. Incorporation of waste and unutilized fly ash (FA) as an amendment material to B has been explored in terms of its hydro-mechanical properties, but not gauged its adsorption potential. Indian subcontinent primarily relies on the thermal power source, and FA dumps have already reached its full capacity. The objective of this study is to explore the adsorption characteristics of four B-FA composite mixes sourced within India, considering Pb2+ as a model contaminant. The effect of fly ash type, fly ash amendment rate and adsorbate concentration was explored in the current study and juxtaposed with B-S mixes, based on 960 batch adsorption tests. Both B-FA and B-S mixes reached equilibrium adsorption capacity within 65 min. At higher adsorbate concentrations (commonly observed in the liner), B-FA mixes exhibited superior adsorption capacity, mainly one mixed with Neyvelli fly ash (NFA). The effect of higher amendment rate had little impact on the adsorption capacity at different concentration, but gradually decreased the percentage removal of Pb2+. The B-S mix showed a drastic decrease in percentage removal at higher adsorbate concentration among all tested mixes. Systematic characterization including geotechnical properties, microstructure and chemical analysis was also done to interpret the obtained results. Both Freundlich and Langmuir models fitted the isotherm data well for all B-FA mixes. The maximum adsorption capacity from the isotherm was correlated to easily measurable Atterberg limits by two empirical relationships.


Assuntos
Bentonita , Poluentes Químicos da Água/análise , Adsorção , Cinza de Carvão , Estudos de Viabilidade , Índia , Cinética , Areia , Instalações de Eliminação de Resíduos
11.
J Hazard Mater ; 396: 122594, 2020 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-32302887

RESUMO

Low hydraulic conductivity and high chemical immobilization are the two characteristics that make bentonite a mandatory construction material for hazardous waste containment applications. We performed a comprehensive batch sorption study on Barmer bentonite (BB), an exclusive construction clay mined in India, using lead (Pb2+) as a model contaminant. The maximum adsorption capacity of BB was obtained as 55 mg g-1 at pH 5 and 27 ±â€¯2℃. Adsorption was extremely rapid, with equilibrium attained <5 min for the BB. Increased adsorbent dosage resulted in higher Pb2+ percentage removal, while adsorption capacity decreased. Ionic strength, salt concentration, valency and ionic radius played a critical role in suppressing the adsorption of Pb2+. Clay fabric change was observed to be dispersed at low ionic strength and gradually attained aggregated face-to-face structures at high ionic strength. The simultaneous presence of other metals/salts strongly influenced Pb2+ removal by BB, while divalent salt exhibited high suppression of adsorptive reaction at low concentrations. Sorption isotherm and kinetic modeling results indicated the possibility of chemisorption of Pb2+ on BB. Based on the thermodynamic analysis, it was noted that Pb2+ adsorption on BB is exothermic, spontaneous and adsorption reaction is less favorable at a higher temperature.

12.
Sci Total Environ ; 688: 409-423, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31242459

RESUMO

Hazardous wastes disposed of in engineered landfills interact with rainwater, generate harmful leachate and may contaminate groundwater. To minimize this, a suitable multi-layered cover system (MLCS) is constructed over the buried waste. Field assessment of complex moisture dynamics in unsaturated MLCS and its long-term hydraulic efficiency has not been investigated in detail for extremely humid conditions (annual rainfall >1000 mm). Therefore, the overarching purpose of this study was to investigate the long-term hydraulic performance of a three-layered hydraulic barrier cover system under humid Indian conditions. The field cover setup was exposed to natural weather condition in the Northeast Indian state of Assam, for 800 days. The MLCS was instrumented to measure continuous variation of volumetric water content and matric suction as function of time and depth. The field measurements were used to determine the appropriate input hydraulic parameters and evapotranspiration model that can be used for numerical modeling. The results showed that simulation using drying van Genuchten soil-water characteristic curve parameters and Penman-Monteith evapotranspiration model matched the field observations. Events of the highest precipitation and extreme drought (cause for desiccation) did not lead to percolation in the drainage layer (60 cm) and barrier layer (100 cm). Numerical analyses performed for 87 years by considering the climate data of two different humid locations (Eastern and Western part) of India revealed that the progressive saturation of barrier layer occurred within 18 to 20 years. However, when geosynthetic clay liner was incorporated as additional barrier material, the saturation time increased by two-fold (42 to 44 years).

13.
Waste Manag Res ; 35(1): 40-46, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27742874

RESUMO

It is important to determine the contaminant retention characteristics of materials when assessing their suitability for use as liners in landfill sites. Sand-bentonite mixtures are commonly used as liners in the construction of landfill sites for industrial and hazardous wastes. Sand is considered to be a passive material with a negligible chemical retention capacity; fly ash, however, offers the additional advantage of adsorbing the heavy metals present in landfill leachates. There have been few studies of the contaminant retention characteristics of fly ash-bentonite mixes. The study reported here determined the contaminant retention characteristics of different fly ashes, bentonite and selected fly ash-bentonite mixes for Pb2+ using 24 h batch tests. The tests were conducted by varying the initial concentrations of metal ions under uncontrolled pH conditions. The efficiency of the removal of Pb2+ by the different types of fly ash and fly ash-bentonite mixes was studied. The influence of multiple sources of fly ash on the retention characteristics of fly ash-bentonite mixes was investigated.


Assuntos
Bentonita/química , Cinza de Carvão/química , Chumbo/análise , Poluentes Ambientais/análise , Poluentes Ambientais/química , Concentração de Íons de Hidrogênio , Chumbo/química , Instalações de Eliminação de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA