Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 7(1): 165, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080475

RESUMO

Aliphatics prevail in asteroids, comets, meteorites and other bodies in our solar system. They are also found in the interstellar and circumstellar media both in gas-phase and in dust grains. Among aliphatics, linear alkanes (n-CnH2n+2) are known to survive in carbonaceous chondrites in hundreds to thousands of parts per billion, encompassing sequences from CH4 to n-C31H64. Despite being systematically detected, the mechanism responsible for their formation in meteorites has yet to be identified. Based on advanced laboratory astrochemistry simulations, we propose a gas-phase synthesis mechanism for n-alkanes starting from carbon and hydrogen under conditions of temperature and pressure that mimic those found in carbon-rich circumstellar envelopes. We characterize the analogs generated in a customized sputter gas aggregation source using a combination of atomically precise scanning tunneling microscopy, non-contact atomic force microscopy and ex-situ gas chromatography-mass spectrometry. Within the formed carbon nanostructures, we identify the presence of n-alkanes with sizes ranging from n-C8H18 to n-C32H66. Ab-initio calculations of formation free energies, kinetic barriers, and kinetic chemical network modelling lead us to propose a gas-phase growth mechanism for the formation of large n-alkanes based on methyl-methylene addition (MMA). In this process, methylene serves as both a reagent and a catalyst for carbon chain growth. Our study provides evidence of an aliphatic gas-phase synthesis mechanism around evolved stars and provides a potential explanation for its presence in interstellar dust and meteorites.

2.
Nano Lett ; 12(9): 4431-6, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22901016

RESUMO

The catalytic decomposition of hydrocarbons on transition-metal surfaces has attracted increasing interest as a method to prepare high quality graphene layers. Here, we study the optimal reaction path for the preparation of graphene nanoislands of selected shape using controlled decomposition of propene on Ni(111). Scanning tunneling microscopy performed at different stages of the reaction provides insight into the temperature and dose-dependent growth of graphene islands, which precedes the formation of monolayer graphene. The effect of postreaction annealing on the morphology of the islands is studied. By adjusting the initial propene dose, reaction temperature, and postannealing procedure, islands with a triangular or hexagonal shape can be selectively obtained.


Assuntos
Cristalização/métodos , Grafite/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Níquel/química , Substâncias Macromoleculares/química , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
3.
Phys Rev Lett ; 108(8): 087205, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22463566

RESUMO

We report a transverse conical spin spiral as the magnetic ground state of a double-layer Mn on a W(110) surface. Using spin-polarized scanning tunneling microscopy, we find a long-range modulation along the [001] direction with a periodicity of 2.4 nm coexisting with a local row-wise antiferromagnetic contrast. First-principles calculations reveal a transverse conical spin-spiral ground state of this system which explains the observed magnetic contrast. The canting of the spins is induced by higher-order exchange interactions, while the spiraling along the [001] direction is due to frustrated Heisenberg exchange and Dzyaloshinskii-Moriya interaction.

4.
Biosens Bioelectron ; 35(1): 206-212, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22459584

RESUMO

The combination of magnetoresistive sensors and magnetic labeling of bioanalytes, which are selectively captured by their complementary antibody in the proximity of the sensor is a powerful method in order to attain truly quantitative immunological assays. In this paper we present a technical solution to exploit the existing spin valve technology to readout magnetic signals of bio-functionalized magnetic nanoparticles. The method is simple and reliable, and it is based on a discrete scan of lateral flow strips with a precise control of the contact force between sensor and sample. It is shown that the signal of the sensor is proportional to the local magnetization produced by the nanoparticles in a wide range of concentrations, and the sensitivity thresholds in both calibration samples and real immunorecognition assays of human chorionic gonadotropin hormone are well below the visual inspection limit (5.5 ng/ml). Furthermore the sample scanning approach and the reduced dimensions of the sensors provide unprecedented spatial resolution of the nanoparticle distribution across the supporting nitrocellulose strip, therefore enabling on-stick control references and multi-analyte capability.


Assuntos
Técnicas Biossensoriais/instrumentação , Nanopartículas de Magnetita , Técnicas Biossensoriais/estatística & dados numéricos , Gonadotropina Coriônica/análise , Desenho de Equipamento , Humanos , Limite de Detecção , Magnetismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA