Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37623751

RESUMO

Moving bed biofilm reactor combined with membrane bioreactor (MBBR-MBR) constitute a highly effective wastewater treatment technology. The aim of this research work was to study the effect of commercial K1 biocarriers (MBBR-MBR K1 unit) and 3D-printed biocarriers fabricated from 13X and Halloysite (MBBR-MBR 13X-H unit), on the efficiency and the fouling rate of an MBBR-MBR unit during wastewater treatment. Various physicochemical parameters and trans-membrane pressure were measured. It was observed that in the MBBR-MBR K1 unit, membrane filtration improved reaching total membrane fouling at 43d, while in the MBBR-MBR 13X-H and in the control MBBR-MBR total fouling took place at about 32d. This is attributed to the large production of soluble microbial products (SMP) in the MBBR-MBR 13X-H, which resulted from a large amount of biofilm created in the 13X-H biocarriers. An optimal biodegradation of the organic load was concluded, and nitrification and denitrification processes were improved at the MBBR-MBR K1 and MBBR-MBR 13X-H units. The dry mass produced on the 13X-H biocarriers ranged at 4980-5711 mg, three orders of magnitude larger than that produced on the K1, which ranged at 2.9-4.6 mg. Finally, it was observed that mostly extracellular polymeric substances were produced in the biofilm of K1 biocarriers while in 13X-H mostly SMP.

2.
Materials (Basel) ; 16(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37445140

RESUMO

The addition of biocarriers can improve biological processes in bioreactors, since their surface allows for the immobilization, attachment, protection, and growth of microorganisms. In addition, the development of a biofilm layer allows for the colonization of microorganisms in the biocarriers. The structure, composition, and roughness of the biocarriers' surface are crucial factors that affect the development of the biofilm. In the current work, the aluminosilicate zeolites 13X and ZSM-5 were examined as the main building components of the biocarrier scaffolds, using bentonite, montmorillonite, and halloysite nanotubes as inorganic binders in various combinations. We utilized 3D printing to form pastes into monoliths that underwent heat treatment. The 3D-printed biocarriers were subjected to a mechanical analysis, including density, compression, and nanoindentation tests. Furthermore, the 3D-printed biocarriers were morphologically and structurally characterized using nitrogen adsorption at 77 K (LN2), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The stress-strain response of the materials was obtained through nanoindentation tests combined with the finite element analysis (FEA). These tests were also utilized to simulate the lattice geometries under compression loading conditions to investigate their deformation and stress distribution in relation to experimental compression testing. The results indicated that the 3D-printed biocarrier of 13X/halloysite nanotubes was endowed with a high specific surface area of 711 m2/g and extended mesoporous structure. Due to these assets, its bulk density of 1.67 g/cm3 was one of the lowest observed amongst the biocarriers derived from the various combinations of materials. The biocarriers based on the 13X zeolite exhibited the highest mechanical stability and appropriate morphological features. The 13X/halloysite nanotubes scaffold exhibited a hardness value of 45.64 MPa, which is moderate compared to the rest, while it presented the highest value of modulus of elasticity. In conclusion, aluminosilicate zeolites and their combinations with clays and inorganic nanotubes provide 3D-printed biocarriers with various textural and structural properties, which can be utilized to improve biological processes, while the most favorable characteristics are observed when utilizing the combination of 13X/halloysite nanotubes.

3.
Materials (Basel) ; 16(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37512393

RESUMO

The goal of this work is to develop a sustainable value chain of carbonaceous adsorbents that can be produced from the solid fibrous digestate (SFD) of biogas plants and further applied in integrated desulfurization-upgrading (CO2/CH4 separation) processes of biogas to yield high-purity biomethane. For this purpose, physical and chemical activation of the SFD-derived BC was optimized to afford micro-mesoporous activated carbons (ACs) of high BET surface area (590-2300 m2g-1) and enhanced pore volume (0.57-1.0 cm3g-1). Gas breakthrough experiments from fixed bed columns of the obtained ACs, using real biogas mixture as feedstock, unveiled that the physical and chemical activation led to different types of ACs, which were sufficient for biogas upgrade and biogas desulfurization, respectively. Performing breakthrough experiments at three temperatures close to ambient, it was possible to define the optimum conditions for enhanced H2S/CO2 separation. It was also concluded that the H2S adsorption capacity was significantly affected by the restriction to gas diffusion. Hence, the best performance was obtained at 50 °C, and the maximum observed in the H2S adsorption capacity vs. the temperature was attributed to the counterbalance between adsorption and diffusion processes.

4.
Waste Manag Res ; 40(8): 1093-1109, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35057678

RESUMO

Traditionally, digestate is considered a waste, which is used as fertiliser in the agriculture industry. Recent studies focus on increasing the profitability of digestate by extracting reusable nutrients to promote biogas plants cost-effectiveness, sustainable management and circular economy. This review focuses on the post-treatment and valorization of liquor which is produced by solid-liquid fractioning of digestate. Nutrient recovery and removal from liquor are possible through mechanical, physicochemical and biological procedures. The processes discussed involve complex procedures that differ in economic value, feasibility, legislative restrictions and performance. The parameters that should be considered to employ these techniques are influenced by liquor characteristics, topography, climate conditions and available resources. These are key parameters to keep in mind during designing and manufacturing a biogas plant. In the following chapters, a discussion on available liquor treatment methods takes place. The present study examines the critical aspects of the available liquor treatment methods.


Assuntos
Biocombustíveis , Fertilizantes , Agricultura , Anaerobiose
5.
J Chromatogr A ; 1369: 147-60, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25441082

RESUMO

Thermal and catalytic pyrolysis are efficient processes for the transformation of biomass to bio-oil, a liquid energy carrier and a general source of chemicals. The elucidation of the bio-oil's composition is essential for a rational design of both its production and utilization process. However, the complex composition of bio-oils hinders their complete qualitative and quantitative analysis, and conventional chromatographic techniques lack the necessary separation power. Two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-ToFMS) is considered a suitable technique for bio-oil analysis due to its increased separation and resolution capacity. This work presents the tentative qualitative and quantitative analysis of bio-oils resulting from the thermal and catalytic pyrolysis of standard xylan, cellulose, lignin and their mixture by GC×GC-ToFMS. Emphasis is placed on the development of the quantitative method using phenol-d6 as internal standard. During the method development, a standard solution of 39 compounds was used for the determination of the respective Relative Response Factors (RRF) employing statistical methods, ANOVA and WLSLR, for verification of the data. The developed method was applied to the above mentioned bio-oils and their detailed analysis is presented. The different compounds produced and their diverse concentration allows for an elucidation of the pyrolysis mechanism and highlight the effect of the catalyst.


Assuntos
Celulose/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Óleos/química , Polissacarídeos/análise , Biomassa , Catálise , Temperatura
6.
J Chromatogr A ; 1218(21): 3317-25, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21036362

RESUMO

Pyrolysis oils have attracted a lot of interest, as they are liquid energy carriers and general sources of chemicals. In this work, gas chromatography with flame ionization detector (GC-FID) and two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) techniques were used to provide both qualitative and quantitative results of the analysis of three different pyrolysis oils. The chromatographic methods and parameters were optimized and solvent choice and separation restrictions are discussed. Pyrolysis oil samples were diluted in suitable organic solvent and were analyzed by GC×GC-TOFMS. An average of 300 compounds were detected and identified in all three samples using the ChromaToF (Leco) software. The deconvoluted spectra were compared with the NIST software library for correct matching. Group type classification was performed by use of the ChromaToF software. The quantification of 11 selected compounds was performed by means of a multiple-point external calibration curve. Afterwards, the pyrolysis oils were extracted with water, and the aqueous phase was analyzed both by GC-FID and, after proper change of solvent, by GC×GC-TOFMS. As previously, the selected compounds were quantified by both techniques, by means of multiple point external calibration curves. The parameters of the calibration curves were calculated by weighted linear regression analysis. The limit of detection, limit of quantitation and linearity range for each standard compound with each method are presented. The potency of GC×GC-TOFMS for an efficient mapping of the pyrolysis oil is undisputable, and the possibility of using it for quantification as well has been demonstrated. On the other hand, the GC-FID analysis provides reliable results that allow for a rapid screening of the pyrolysis oil. To the best of our knowledge, very few papers have been reported with quantification attempts on pyrolysis oil samples using GC×GC-TOFMS most of which make use of the internal standard method. This work provides the ground for further analysis of pyrolysis oils of diverse sources for a rational design of both their production and utilization process.


Assuntos
Biocombustíveis/análise , Biomassa , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ionização de Chama , Modelos Lineares , Compostos Orgânicos/análise , Compostos Orgânicos/isolamento & purificação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Bioresour Technol ; 101(19): 7658-60, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20547058

RESUMO

This study focuses on the use of waste cooking oil (WCO) as the main feedstock for hydrotreatment to evaluate the effect of temperature on the product hydrocarbon composition. A qualitative analysis was initially performed using a GC x GC-TOFMS indicating the presence of mainly paraffins of the C15-C18 range. A quantitative analysis was also performed via a GC-FID, which gave both n-paraffins and iso-paraffins in the range of C8-C29. The results indicate that hydrotreating temperature favors isomerization reactions as the amount of n-paraffins decreases while the amount of iso-paraffins increases. For all experiments the same commercial hydrotreating catalyst was utilized, while the remaining operating parameters were constant (pressure=1200 psig, LHSV=1.0 h(-1), H(2)/oil ratio=4000 scfb, liquid feed=0.33 ml/min, and gas feed=0.4 scfh).


Assuntos
Biocombustíveis , Culinária , Óleos/química , Parafina/análise , Temperatura , Resíduos/análise , Água/química , Reatores Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA