Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bull Exp Biol Med ; 175(2): 225-228, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37464199

RESUMO

We performed a search for nanoantibodies that specifically interact with the receptor-binding domain (RBD) of the SARS-CoV-2 surface protein. The specificity of single-domain antibodies from the blood sera of a llama immunized with RBD of SARS-CoV-2 surface protein S (variant B.1.1.7 (Alpha)) was analyzed by ELISA. Recombinant trimers of the SARS-CoV-2 spike protein were used as antigens. In this work, a set of single-domain antibodies was obtained that specifically bind to the RBD of the SARS-CoV-2 virus.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Humanos , SARS-CoV-2 , Anticorpos de Domínio Único/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Proteínas de Membrana
2.
Bull Exp Biol Med ; 174(2): 246-249, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36598669

RESUMO

During the COVID-19 pandemic, the development of prophylactic vaccines, including those based on new platforms, became highly relevant. One such platform is the creation of vaccines combining DNA and protein components in one construct. For the creation of DNA vaccine, we chose the full-length spike protein (S) of the SARS-CoV-2 virus and used the recombinant receptor-binding domain (RBD) of the S protein produced in CHO-K1 cells as a protein component. The immunogenicity of the developed combined vaccine and its individual components was compared and the contribution of each component to the induction of the immune response was analyzed. The combined DNA/protein vaccine possesses the advantages of both underlying approaches and is capable of inducing both humoral (similar to subunit vaccines) and cellular (similar to DNA vaccines) immunity.


Assuntos
COVID-19 , Vacinas de DNA , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/uso terapêutico , SARS-CoV-2 , Pandemias , Vacinas de DNA/genética , Vacinas Combinadas , DNA , Anticorpos Antivirais
3.
Mol Biol ; 55(6): 889-898, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955558

RESUMO

The development of preventive vaccines became the first order task in the COVID-19 pandemic caused by SARS-CoV-2. This paper reports the construction of the pVAX-RBD plasmid containing the Receptor-Binding Domain (RBD) of the S protein and a unique signal sequence 176 which promotes target protein secretion into the extracellular space thereby increasing the efficiency of humoral immune response activation. A polyglucine-spermidine conjugate (PGS) was used to deliver pVAX-RBD into the cells. The comparative immunogenicity study of the naked pVAX-RBD and pVAX-RBD enclosed in the PGS envelope showed that the latter was more efficient in inducing an immune response in the immunized mice. In particular, RBD-specific antibody titers were shown in ELISA to be no higher than 1 : 1000 in the animals from the pVAX-RBD group and 1 : 42 000, in the pVAX-RBD-PGS group. The pVAX-RBD‒PGS construct effectively induced cellular immune response. Using ELISpot, it has been demonstrated that splenocytes obtained from the immunized animals effectively produced INF-γ in response to stimulation with the S protein-derived peptide pool. The results suggest that the polyglucine-spermidine conjugate-enveloped pVAX-RBD construct may be considered as a promising DNA vaccine against COVID-19.

4.
Mol Biol (Mosk) ; 55(6): 987-998, 2021.
Artigo em Russo | MEDLINE | ID: mdl-34837703

RESUMO

The development of preventive vaccines became the first order task in the COVID-19 pandemic caused by SARS-CoV-2. This paper reports the construction of the pVAX-RBD plasmid containing the Receptor-Binding Domain (RBD) of the S protein and a unique signal sequence 176 which promotes target protein secretion into the extracellular space thereby increasing the efficiency of humoral immune response activation. A polyglucine-spermidine conjugate (PGS) was used to deliver pVAX-RBD into the cells. The comparative immunogenicity study of the naked pVAX-RBD and pVAX-RBD enclosed in the PGS envelope showed that the latter was more efficient in inducing an immune response in the immunized mice. In particular, RBD-specific antibody titers were shown in ELISA to be no higher than 1 : 1000 in the animals from the pVAX-RBD group and 1 : 42000, in the pVAX-RBD-PGS group. The pVAX-RBD-PGS construct effectively induced cellular immune response. Using ELISpot, it has been demonstrated that splenocytes obtained from the immunized animals effectively produced INF-y in response to stimulation with the S protein-derived peptide pool. The results suggest that the polyglucine-spermidine conjugate-enveloped pVAX-RBD construct may be considered as a promising DNA vaccine against COVID-19.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Antivirais , Vacinas contra COVID-19 , DNA , Humanos , Camundongos , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA