Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Dent Res ; 100(9): 897-905, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33764175

RESUMO

The systematic classification of the cells that compose a tissue or an organ is key to understanding how these cells cooperate and interact as a functional unit. Our capacity to detect features that define cell identity has evolved from morphological and chemical analyses, through the use of predefined genetic markers, to unbiased transcriptomic and epigenetic profiling. The innovative technology of single-cell RNA sequencing (scRNA-seq) enables transcriptional profiling of thousands of individual cells. Since its development, scRNA-seq has been extensively applied to numerous organs and tissues in a wide range of animal models and human samples, thereby providing a plethora of fundamental biological insights into their development, homeostasis, and pathology. In this review, we present the findings of 3 recent studies that employed scRNA-seq to unravel the complexity of cellular composition in mammalian teeth. These findings offer an unprecedented catalogue of cell types in the mouse incisor, which is a convenient model system for studying continuous tooth growth. These studies identified novel cell types in the tooth epithelium and mesenchyme, as well as new markers for known cell types. Computational analyses of the data also uncovered the lineage and dynamics of cell states during ameloblast and odontoblast differentiation during both normal homeostasis and injury repair. The transcriptional differences between the mouse incisor and mouse and human molars uncover species-specific as well as shared features in tooth cell composition. Here, we highlight these findings and discuss important similarities and differences between these studies. We also discuss potential future applications of scRNA-seq in dental research and dentistry. Together, these studies demonstrate how the rapidly evolving technology of scRNA-seq can advance the study of tooth development and function and provide putative targets for regenerative approaches.


Assuntos
Análise de Célula Única , Transcriptoma , Animais , Diferenciação Celular , Perfilação da Expressão Gênica , Marcadores Genéticos , Camundongos , Análise de Sequência de RNA
2.
Bone ; 52(1): 197-205, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23044045

RESUMO

Fetal and postnatal bone development in humans is traditionally viewed as a process characterized by progressively increasing mineral density. Yet, a temporary decrease in mineral density has been described in the long bones of infants in the immediate postnatal period. The mechanism that underlies this phenomenon, as well as its causes and consequences, remain unclear. Using daily µCT scans of murine femora and tibiae during perinatal development, we show that a temporary decrease in tissue mineral density (TMD) is evident in mice. By monitoring spatial and temporal structural changes during normal growth and in a mouse strain in which osteoclasts are non-functional (Src-null), we show that endosteal bone resorption is the main cause for the perinatal decrease in TMD. Mechanical testing revealed that this temporary decrease is correlated with reduced stiffness of the bones. We also show, by administration of a progestational agent to pregnant mice, that the decrease in TMD is not the result of parturition itself. This study provides a comprehensive view of perinatal long bone development in mice, and describes the process as well as the consequences of density fluctuation during this period.


Assuntos
Densidade Óssea , Fêmur/química , Tíbia/química , Animais , Fenômenos Biomecânicos , Desenvolvimento Ósseo , Feminino , Camundongos , Camundongos Endogâmicos ICR , Gravidez , Progestinas/administração & dosagem , Tomografia
3.
J Struct Biol ; 175(3): 451-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21708270

RESUMO

The baculum is an extraskeletal bone located in the penis of a few species in several orders of mammals such as carnivores, insectivores, rodents, bats and primates. This study aims to describe the structure, architecture and mechanical properties of the canine baculum. To this end canine bacula from castrated and uncastrated dogs were collected and examined by light microscopy, micro-computed tomography (microCT) scanning, histological staining, and mechanical testing. Their mineral density and mechanical properties were compared with those of a typical skeletal bone (the radius) in the same dog. Furthermore, a numerical model of a representative baculum was created and its mechanical performance analyzed using the finite element method, in order to try to elucidate its function. Examination of light microscopy images of transverse sections shows that the baculum consists of a typical sandwich structure, with two cortical plates separated, and joined, by loose cancellous bone. MicroCT scans reveal that the mineral density is lower in the baculum than in the radius, both in castrated as well as in uncastrated dogs, resulting in much lower stiffness. Castration was found to decrease the mineral density in both the baculum and the radius. The most likely function of the baculum of the dog is to stiffen the penis to assist intromission, and its much lower mineral density compared to that of the radius may be a mechanism designed to decrease the stiffness somewhat, and thus reduce the risk of fracture during copulation.


Assuntos
Osso e Ossos/diagnóstico por imagem , Pênis/diagnóstico por imagem , Animais , Fenômenos Biomecânicos , Densidade Óssea , Cães , Masculino , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA