Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35208365

RESUMO

Graphene nano-electromechanical resonant sensors have wide application in areas such as seawater desalination, new energy, biotechnology, and aerospace due to their small size, light weight, and high sensitivity and resolution. This review first introduces the physical and chemical properties of graphene and the research progress of four preparation processes of graphene. Next, the principle prototype of graphene resonators is analyzed, and three main methods for analyzing the vibration characteristics of a graphene resonant sheet are described: molecular structural mechanics, non-local elastic theory and molecular dynamics. Then, this paper reviews research on graphene resonator preparation, discussing the working mechanism and research status of the development of graphene resonant mass sensors, pressure sensors and inertial sensors. Finally, the difficulties in developing graphene nano-electromechanical resonant sensors are outlined and the future trend of these sensors is described.

2.
Nanomaterials (Basel) ; 9(4)2019 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-30959952

RESUMO

An opto-thermally excited optical fiber Fabry-Perot (F-P) resonant probe with suspended clamped circular graphene diaphragm is presented in this paper. Then, the dependence of resonance frequency behaviors of graphene diaphragm upon opto-mechanical factors including membrane properties, laser excitation parameters and film boundary conditions are investigated via COMSOL Multiphysics simulation. The results show that the radius and thickness of membrane will linearly affect the optical fiber light-induced temperature distribution, thus resulting in rapidly decreasing resonance frequency changes with the radius-to-thickness ratio. Moreover, the prestress can be regulated in the range of 108 Pa to 108 Pa by altering the environmental temperature with a scale factor of 14.2 MPa/K. It is important to note that the availability of F-P resonant probe with a defective clamped circular graphene membrane can be improved notably by fabricating the defected circular membrane to a double-end clamped beam, which gives a broader perspective to characterize the resonance performance of opto-thermally excited F-P resonators.

3.
Sensors (Basel) ; 18(7)2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30011846

RESUMO

A novel, ultrahigh-sensitivity wide-range resonant micro-accelerometer using two differential double-clamped monolayer graphene beams is designed and investigated by steady-state simulation via COMSOL Multiphysics software in this paper. Along with stiffness-enhanced optimized folded support beams, two symmetrical 3-GPa prestressed graphene nano-beams serve as resonant sensitive elements with a size of 10 µm × 1 µm (length × width) to increase the acceleration sensitivity while extending the measurement range. The simulation results show that the accelerometer with cascade-connected graphene and proof-mass assembly exhibits the ultrahigh sensitivity of 21,224 Hz/g and quality factor of 9773 in the range of 0⁻1000 g. This is remarkably superior to previously reported studies characterized by attaching proof mass to the graphene components directly. The proposed accelerometer shows great potential as an alternative to quartz and silicon-based resonant sensors in high-impact and highly sensitive inertial measurement applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA