Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39122601

RESUMO

Pregnancy is associated with physiological adaptations that affect virtually all organs, enabling the mother to support the growing fetus and placenta while withstanding the demands of pregnancy. As a result, mammalian pregnancy is a unique state that exerts paradoxical effects on maternal health. On one hand, the metabolic stress induced by pregnancy can accelerate aging and functional decline in organs. On the other hand, pregnancy activates metabolic programming and tissue regenerative responses that can reverse age-related impairments. In this sense, the oocyte-to-blastocyst transition is not the only physiological reprogramming event in the mammalian body, as pregnancy-induced regeneration could constitute a second physiological reprogramming event. Here, we review findings on how pregnancy dualistically leads to aging and rejuvenation in the maternal body.

3.
Cell Prolif ; : e13707, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39021312

RESUMO

In the early embryonic stages, Lin-28 homologue A (Lin28a) is highly expressed and declines as the embryo matures. As an RNA-binding protein, Lin28a maintains some adult muscle stem cells (MuSCs) in an embryonic-like state, but its RNA metabolism regulation mechanism remains unclear. BioGPS analysis revealed that Lin28a expression is significantly higher in muscle tissues than in other tissues. Lin28a-positive muscle stem cells (Lin28a+ MuSCs) were sorted from Lin28a-CreERT2; LSL-tdTomato mouse skeletal muscle tissue, which exhibited a higher proliferation rate than the control group. Lin28a-bound transcripts are enriched in various biological processes such as DNA repair, cell cycle, mitochondrial tricarboxylic acid cycle and oxidative stress response. The expression of insulin-like growth factor 2 mRNA-binding protein 3 (Igf2bp3) was markedly elevated in the presence of Lin28a. Co-immunoprecipitation analysis further demonstrated that Lin28a associates with Igf2bp3. Immunofluorescence analyses confirmed that Lin28a, Igf2bp3 and G3bp1 colocalize to form stress granules (SG), and N6-methyladenosine (m6A) modification promotes the formation of Lin28a-SG. Sequencing of the transcriptome and RNAs immunoprecipitated by Lin28a, Igf2bp3 and m6A antibodies in Lin28a+ MuSCs further revealed that Lin28a and Igf2bp3 collaboratively regulate the expression of DNA repair-related genes, including Fancm and Usp1. Lin28a stabilises Igf2bp3, Usp1, and Fancm mRNAs, enhancing DNA repair against oxidative or proteotoxic stress, thus promoting MuSCs self-renewal. Understanding the intricate mechanisms through which Lin28a and Igf2bp3 regulate MuSCs provides a deeper understanding of stem cell self-renewal, with potential implications for regenerative medicine.

4.
Cell Stem Cell ; 31(9): 1280-1297.e7, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39084220

RESUMO

During pregnancy, placental-fetal nutrient allocation is crucial for fetal and maternal health. However, the regulatory mechanisms for nutrient metabolism and allocation in placental trophoblasts have remained unclear. Here, we used human first-trimester placenta samples and human trophoblast stem cells (hTSCs) to discover that glucose metabolism is highly active in hTSCs and cytotrophoblasts, but during syncytialization, it decreases to basal levels, remaining necessary for fueling acetyl-CoA and differentiation potential. Acetate supplementation could rescue syncytiotrophoblast fusion from glycolysis deficiency by replenishing acetyl-CoA and maintaining histone acetylation, thus rescuing the activation of syncytialization genes. Even brief glycolysis deficiency could permanently inhibit differentiation potential and promote inflammation, which could also be permanently rescued by brief acetate supplementation in vivo. These results suggest that hTSCs retain only basal glycolytic acetyl-CoA metabolism during syncytialization to regulate cell fates via nutrient-responsive histone acetylation, with implications for our understanding of the balance between placental and fetal nutrition.


Assuntos
Acetilcoenzima A , Histonas , Células-Tronco , Trofoblastos , Humanos , Trofoblastos/metabolismo , Trofoblastos/citologia , Acetilcoenzima A/metabolismo , Feminino , Histonas/metabolismo , Acetilação , Gravidez , Células-Tronco/metabolismo , Células-Tronco/citologia , Diferenciação Celular , Placenta/metabolismo , Glicólise , Animais , Glucose/metabolismo
5.
Cell ; 187(3): 764-781.e14, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306985

RESUMO

Pregnancy induces dramatic metabolic changes in females; yet, the intricacies of this metabolic reprogramming remain poorly understood, especially in primates. Using cynomolgus monkeys, we constructed a comprehensive multi-tissue metabolome atlas, analyzing 273 samples from 23 maternal tissues during pregnancy. We discovered a decline in metabolic coupling between tissues as pregnancy progressed. Core metabolic pathways that were rewired during primate pregnancy included steroidogenesis, fatty acid metabolism, and arachidonic acid metabolism. Our atlas revealed 91 pregnancy-adaptive metabolites changing consistently across 23 tissues, whose roles we verified in human cell models and patient samples. Corticosterone and palmitoyl-carnitine regulated placental maturation and maternal tissue progenitors, respectively, with implications for maternal preeclampsia, diabetes, cardiac hypertrophy, and muscle and liver regeneration. Moreover, we found that corticosterone deficiency induced preeclampsia-like inflammation, indicating the atlas's potential clinical value. Overall, our multi-tissue metabolome atlas serves as a framework for elucidating the role of metabolic regulation in female health during pregnancy.


Assuntos
Metabolômica , Gravidez , Animais , Feminino , Humanos , Gravidez/metabolismo , Corticosterona/metabolismo , Metaboloma/fisiologia , Placenta/metabolismo , Pré-Eclâmpsia , Primatas/metabolismo
6.
Cell Prolif ; 56(5): e13459, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37177849

RESUMO

During ageing, adult stem cells' regenerative properties decline, as they undergo replicative senescence and lose both their proliferative and differentiation capacities. In contrast, embryonic and foetal progenitors typically possess heightened proliferative capacities and manifest a more robust regenerative response upon injury and transplantation, despite undergoing many rounds of mitosis. How embryonic and foetal progenitors delay senescence and maintain their proliferative and differentiation capacities after numerous rounds of mitosis, remains unknown. It is also unclear if defined embryonic factors can rejuvenate adult progenitors to confer extended proliferative and differentiation capacities, without reprogramming their lineage-specific fates or inducing oncogenic transformation. Here, we report that a minimal combination of LIN28A, TERT, and sh-p53 (LTS), all of which are tightly regulated and play important roles during embryonic development, can delay senescence in adult muscle progenitors. LTS muscle progenitors showed an extended proliferative capacity, maintained a normal karyotype, underwent myogenesis normally, and did not manifest tumorigenesis nor aberrations in lineage differentiation, even in late passages. LTS treatment promoted self-renewal and rescued the pro-senescence phenotype of aged cachexia patients' muscle progenitors, and promoted their engraftment for skeletal muscle regeneration in vivo. When we examined the mechanistic basis for LIN28A's role in the LTS minimum combo, let-7 microRNA suppression could not fully explain how LIN28A promoted muscle progenitor self-renewal. Instead, LIN28A was promoting the translation of oxidative phosphorylation mRNAs in adult muscle progenitors to optimize mitochondrial reactive oxygen species (mtROS) and mitohormetic signalling. Optimized mtROS induced a variety of mitohormetic stress responses, including the hypoxic response for metabolic damage, the unfolded protein response for protein damage, and the p53 response for DNA damage. Perturbation of mtROS levels specifically abrogated the LIN28A-driven hypoxic response in Hypoxia Inducible Factor-1α (HIF1α) and glycolysis, and thus LTS progenitor self-renewal, without affecting normal or TS progenitors. Our findings connect embryonically regulated factors to mitohormesis and progenitor rejuvenation, with implications for ageing-related muscle degeneration.


Assuntos
Células-Tronco Adultas , Rejuvenescimento , Proteína Supressora de Tumor p53/metabolismo , Diferenciação Celular , Células-Tronco Adultas/metabolismo
7.
Cell Res ; 33(9): 712-726, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37188880

RESUMO

During homeostasis and after injury, adult muscle stem cells (MuSCs) activate to mediate muscle regeneration. However, much remains unclear regarding the heterogeneous capacity of MuSCs for self-renewal and regeneration. Here, we show that Lin28a is expressed in embryonic limb bud muscle progenitors, and that a rare reserve subset of Lin28a+Pax7- skeletal MuSCs can respond to injury at adult stage by replenishing the Pax7+ MuSC pool to drive muscle regeneration. Compared with adult Pax7+ MuSCs, Lin28a+ MuSCs displayed enhanced myogenic potency in vitro and in vivo upon transplantation. The epigenome of adult Lin28a+ MuSCs showed resemblance to embryonic muscle progenitors. In addition, RNA-sequencing revealed that Lin28a+ MuSCs co-expressed higher levels of certain embryonic limb bud transcription factors, telomerase components and the p53 inhibitor Mdm4, and lower levels of myogenic differentiation markers compared to adult Pax7+ MuSCs, resulting in enhanced self-renewal and stress-response signatures. Functionally, conditional ablation and induction of Lin28a+ MuSCs in adult mice revealed that these cells are necessary and sufficient for efficient muscle regeneration. Together, our findings connect the embryonic factor Lin28a to adult stem cell self-renewal and juvenile regeneration.


Assuntos
Células-Tronco Adultas , Células Satélites de Músculo Esquelético , Animais , Camundongos , Músculo Esquelético , Fibras Musculares Esqueléticas , Autorrenovação Celular
8.
Adv Sci (Weinh) ; 10(21): e2301519, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37140179

RESUMO

It is well-known that muscle regeneration declines with aging, and aged muscles undergo degenerative atrophy or sarcopenia. While exercise and acute injury are both known to induce muscle regeneration, the molecular signals that help trigger muscle regeneration have remained unclear. Here, mass spectrometry imaging (MSI) is used to show that injured muscles induce a specific subset of prostanoids during regeneration, including PGG1, PGD2, and the prostacyclin PGI2. The spike in prostacyclin promotes skeletal muscle regeneration via myoblasts, and declines with aging. Mechanistically, the prostacyclin spike promotes a spike in PPARγ/PGC1a signaling, which induces a spike in fatty acid oxidation (FAO) to control myogenesis. LC-MS/MS and MSI further confirm that an early FAO spike is associated with normal regeneration, but muscle FAO became dysregulated during aging. Functional experiments demonstrate that the prostacyclin-PPARγ/PGC1a-FAO spike is necessary and sufficient to promote both young and aged muscle regeneration, and that prostacyclin can synergize with PPARγ/PGC1a-FAO signaling to restore aged muscles' regeneration and physical function. Given that the post-injury prostacyclin-PPARγ-FAO spike can be modulated pharmacologically and via post-exercise nutrition, this work has implications for how prostacyclin-PPARγ-FAO might be fine-tuned to promote regeneration and treat muscle diseases of aging.


Assuntos
Músculo Esquelético , PPAR gama , Epoprostenol , Cromatografia Líquida , Espectrometria de Massas em Tandem , Prostaglandinas I , Regeneração/fisiologia
9.
Anal Bioanal Chem ; 415(14): 2819-2830, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37083759

RESUMO

We used deep neural networks to process the mass spectrometry imaging (MSI) data of mouse muscle (young vs aged) and human cancer (tumor vs normal adjacent) tissues, with the aim of using explainable artificial intelligence (XAI) methods to rapidly identify biomarkers that can distinguish different classes of tissues, from several thousands of metabolite features. We also modified classic neural network architectures to construct a deep convolutional neural network that is more suitable for processing high-dimensional MSI data directly, instead of using dimension reduction techniques, and compared it to seven other machine learning analysis methods' performance in classification accuracy. After ascertaining the superiority of Channel-ResNet10, we used a novel channel selection-based XAI method to identify the key metabolite features that were responsible for its learning accuracy. These key metabolite biomarkers were then processed using MetaboAnalyst for pathway enrichment mapping. We found that Channel-ResNet10 was superior to seven other machine learning methods for MSI analysis, reaching > 98% accuracy in muscle aging and colorectal cancer datasets. We also used a novel channel selection-based XAI method to find that in young and aged muscle tissues, the differentially distributed metabolite biomarkers were especially enriched in the propanoate metabolism pathway, suggesting it as a novel target pathway for anti-aging therapy.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Animais , Camundongos , Humanos , Idoso , Aprendizado de Máquina , Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador
10.
Mol Ther ; 31(5): 1418-1436, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37016578

RESUMO

Cancer cachexia is a multifactorial syndrome characterized by a significant loss of skeletal muscle, which negatively affects the quality of life. Inhibition of myostatin (Mstn), a negative regulator of skeletal muscle growth and differentiation, has been proven to preserve muscle mass in muscle atrophy diseases, including cachexia. However, myostatin inhibitors have repeatedly failed clinical trials because of modest therapeutic effects and side effects due to the poor efficiency and toxicity of existing delivery methods. Here, we describe a novel method for delivering Mstn siRNA to skeletal muscles using red blood cell-derived extracellular vesicles (RBCEVs) in a cancer cachectic mouse model. Our data show that RBCEVs are taken up by myofibers via intramuscular administration. Repeated intramuscular administrations with RBCEVs allowed the delivery of siRNAs, thereby inhibiting Mstn, increasing muscle growth, and preventing cachexia in cancer-bearing mice. We observed the same therapeutic effects when delivering siRNAs against malonyl-CoA decarboxylase, an enzyme driving dysfunctional fatty acid metabolism in skeletal muscles during cancer cachexia. We demonstrate that intramuscular siRNA delivery by RBCEVs is safe and non-inflammatory. Hence, this method is useful to reduce the therapeutic dose of siRNAs, to avoid toxicity and off-target effects caused by systemic administration of naked siRNAs at high doses.


Assuntos
Miostatina , Neoplasias , Camundongos , Animais , Miostatina/metabolismo , RNA Interferente Pequeno/metabolismo , Caquexia/etiologia , Caquexia/terapia , Caquexia/metabolismo , Qualidade de Vida , Músculo Esquelético/metabolismo , Neoplasias/complicações , Neoplasias/terapia , Neoplasias/metabolismo , Atrofia Muscular , RNA de Cadeia Dupla
11.
Sci Adv ; 9(5): eadd0455, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36735792

RESUMO

Skeletal muscle myofibers are heterogeneous in their metabolism. However, metabolomic profiling of single myofibers has remained difficult. Mass spectrometry imaging (MSI) is a powerful tool for imaging molecular distributions. In this work, we optimized the workflow of matrix-assisted laser desorption/ionization (MALDI)-based MSI from cryosectioning to metabolomics data analysis to perform high-spatial resolution metabolomic profiling of slow- and fast-twitch myofibers. Combining the advantages of MSI and liquid chromatography-MS (LC-MS), we produced spatial metabolomics results that were more reliable. After the combination of high-spatial resolution MSI and LC-MS metabolomic analysis, we also discovered a new subtype of superfast type 2B myofibers that were enriched for fatty acid oxidative metabolism. Our technological workflow could serve as an engine for metabolomics discoveries, and our approach has the potential to provide critical insights into the metabolic heterogeneity and pathways that underlie fundamental biological processes and disease states.


Assuntos
Metabolômica , Músculo Esquelético , Metabolômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
12.
Stem Cell Res Ther ; 13(1): 412, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964138

RESUMO

BACKGROUND: Midbrain dopaminergic (DA) progenitors derived from human pluripotent stem cells are considered to be a promising treatment for Parkinson's disease (PD). However, the differentiation process produces undesired cell types, which influence the in vivo evaluation of DA cells. In this paper, we analyze the cell fate choice during differentiation and provide valuable information on cell preparation. METHODS: Human embryonic stem cells were differentiated into DA progenitors. We applied single-cell RNA sequencing (scRNA-seq) of the differentiation cells at different time points and investigated the gene expression profiles. Based on the differentially expressed genes between DA and non-DA cells, we investigated the impact of LGI1 (DA enriched) overexpression on DA differentiation and the enrichment effect of CD99 (non-DA enriched) sorting. RESULTS: Transcriptome analyses revealed the DA differentiation trajectory as well as non-DA populations and three key lineage branch points. Using genetic gain- and loss-of-function approaches, we found that overexpression of LGI1, which is specific to EN1+ early DA progenitors, can promote the generation of TH+ neurons. We also found that choroid plexus epithelial cells and DA progenitors are major components of the final product (day 25), and CD99 was a specific surface marker of choroid plexus epithelial cells. Sorting of CD99- cells eliminated major contaminant cells and improved the purity of DA progenitors. CONCLUSIONS: Our study provides the single-cell transcriptional landscape of in vitro DA differentiation, which can guide future improvements in DA preparation and quality control for PD cell therapy.


Assuntos
Células-Tronco Embrionárias Humanas , Doença de Parkinson , Diferenciação Celular/fisiologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Doença de Parkinson/terapia , Transcriptoma
14.
Cell Prolif ; 55(5): e13214, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35411556

RESUMO

OBJECTIVES: To restore tissue growth without increasing the risk for cancer during aging, there is a need to identify small molecule drugs that can increase cell growth without increasing cell proliferation. While there have been numerous high-throughput drug screens for cell proliferation, there have been few screens for post-mitotic anabolic growth. MATERIALS AND METHODS: A machine learning (ML)-based phenotypic screening strategy was used to discover metabolites that boost muscle growth. Western blot, qRT-PCR and immunofluorescence staining were used to evaluate myotube hypertrophy/maturation or protein synthesis. Mass spectrometry (MS)-based thermal proteome profiling-temperature range (TPP-TR) technology was used to identify the protein targets that bind the metabolites. Ribo-MEGA size exclusion chromatography (SEC) analysis was used to verify whether the ribosome proteins bound to calcitriol. RESULTS: We discovered both the inactive cholecalciferol and the bioactive calcitriol are amongst the top hits that boost post-mitotic growth. A large number of ribosomal proteins' melting curves were affected by calcitriol treatment, suggesting that calcitriol binds to the ribosome complex directly. Purified ribosomes directly bound to pure calcitriol. Moreover, we found that calcitriol could increase myosin heavy chain (MHC) protein translation and overall nascent protein synthesis in a cycloheximide-sensitive manner, indicating that calcitriol can directly bind and enhance ribosomal activity to boost muscle growth. CONCLUSION: Through the combined strategy of ML-based phenotypic screening and MS-based omics, we have fortuitously discovered a new class of metabolite small molecules that can directly activate ribosomes to promote post-mitotic growth.


Assuntos
Calcitriol , Colecalciferol , Calcitriol/farmacologia , Proliferação de Células , Colecalciferol/metabolismo , Colecalciferol/uso terapêutico , Aprendizado de Máquina , Ribossomos/metabolismo
15.
17.
Cell Prolif ; 55(3): e13197, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35106869

Assuntos
Ciclo Celular
18.
J Cachexia Sarcopenia Muscle ; 13(2): 781-794, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35106971

RESUMO

Age-associated obesity and muscle atrophy (sarcopenia) are intimately connected and are reciprocally regulated by adipose tissue and skeletal muscle dysfunction. During ageing, adipose inflammation leads to the redistribution of fat to the intra-abdominal area (visceral fat) and fatty infiltrations in skeletal muscles, resulting in decreased overall strength and functionality. Lipids and their derivatives accumulate both within and between muscle cells, inducing mitochondrial dysfunction, disturbing ß-oxidation of fatty acids, and enhancing reactive oxygen species (ROS) production, leading to lipotoxicity and insulin resistance, as well as enhanced secretion of some pro-inflammatory cytokines. In turn, these muscle-secreted cytokines may exacerbate adipose tissue atrophy, support chronic low-grade inflammation, and establish a vicious cycle of local hyperlipidaemia, insulin resistance, and inflammation that spreads systemically, thus promoting the development of sarcopenic obesity (SO). We call this the metabaging cycle. Patients with SO show an increased risk of systemic insulin resistance, systemic inflammation, associated chronic diseases, and the subsequent progression to full-blown sarcopenia and even cachexia. Meanwhile in many cardiometabolic diseases, the ostensibly protective effect of obesity in extremely elderly subjects, also known as the 'obesity paradox', could possibly be explained by our theory that many elderly subjects with normal body mass index might actually harbour SO to various degrees, before it progresses to full-blown severe sarcopenia. Our review outlines current knowledge concerning the possible chain of causation between sarcopenia and obesity, proposes a solution to the obesity paradox, and the role of fat mass in ageing.


Assuntos
Sarcopenia , Tecido Adiposo/patologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Humanos , Músculo Esquelético/patologia , Obesidade/patologia , Sarcopenia/etiologia , Sarcopenia/patologia
19.
Cell Discov ; 8(1): 6, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35102134

RESUMO

Regenerative capacity declines throughout evolution and with age. In this study, we asked whether metabolic programs underlying regenerative capability might be conserved across species, and if so, whether such metabolic drivers might be harnessed to promote tissue repair. To this end, we conducted metabolomic analyses in two vertebrate organ regeneration models: the axolotl limb blastema and antler stem cells. To further reveal why young individuals have higher regenerative capacity than the elderly, we also constructed metabolic profiles for primate juvenile and aged tissues, as well as young and aged human stem cells. In joint analyses, we uncovered that active pyrimidine metabolism and fatty acid metabolism correlated with higher regenerative capacity. Furthermore, we identified a set of regeneration-related metabolite effectors conserved across species. One such metabolite is uridine, a pyrimidine nucleoside, which can rejuvenate aged human stem cells and promote regeneration of various tissues in vivo. These observations will open new avenues for metabolic intervention in tissue repair and regeneration.

20.
Exp Dermatol ; 31(6): 906-917, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35119146

RESUMO

Androgenetic alopecia (AGA) is a prevalent hair loss condition in males that develops due to the influence of androgens and genetic predisposition. With the aim of elucidating genes involved in AGA pathogenesis, we modelled AGA with three-dimensional culture of keratinocyte-surrounded dermal papilla (DP) cells. We co-cultured immortalised balding and non-balding human DP cells (DPCs) derived from male AGA patients with epidermal keratinocyte (NHEK) using multi-interfacial polyelectrolyte complexation technique. We observed up-regulated mitochondria-related gene expression in balding compared with non-balding DP aggregates which indicated altered mitochondria metabolism. Further observation of significantly reduced electron transport chain complex activity (complexes I, IV and V), ATP levels and ability to uptake metabolites for ATP generation demonstrated compromised mitochondria function in balding DPC. Balding DP was also found to be under significantly higher oxidative stress than non-balding DP. Our experiments suggest that application of antioxidants lowers oxidative stress levels and improves metabolite uptake in balding DPC. We postulate that the observed up-regulation of mitochondria-related genes in balding DP aggregates resulted from an over-compensatory effort to rescue decreased mitochondrial function in balding DP through the attempted production of new functional mitochondria. In all, our three-dimensional co-culturing revealed mitochondrial dysfunction in balding DPC, suggesting a metabolic component in the aetiology of AGA.


Assuntos
Alopecia , Androgênios , Trifosfato de Adenosina/metabolismo , Alopecia/patologia , Androgênios/metabolismo , Folículo Piloso/metabolismo , Humanos , Queratinócitos/metabolismo , Masculino , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA