Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood Cells Mol Dis ; 108: 102871, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39013336

RESUMO

A graft source for allogeneic hematopoietic stem cell transplantation is umbilical cord blood, which contains umbilical cord blood mononuclear cells (MNCs and mesenchymal stem cells, both an excellent source of extracellular microparticles (MPs). MPs act as cell communication mediators, which are implicated in reactive oxygen species formation or detoxification depending on their origin. Oxidative stress plays a crucial role in both the development of cancer and its treatment by triggering apoptotic mechanisms, in which CD34+ cells are implicated. The aim of this work is to investigate the oxidative stress status and the apoptosis of HL-60 and mononuclear cells isolated from umbilical cord blood (UCB) following a 24- and 48-hour exposure to CD34 + microparticles (CD34 + MPs). The activity of superoxide dismutase, glutathione reductase, and glutathione S-transferase, as well as lipid peroxidation in the cells, were employed as oxidative stress markers. A 24- and 48-hour exposure of leukemic and mononuclear cells to CD34 + -MPs resulted in a statistically significant increase in the antioxidant activity and lipid peroxidation in both cells types. Moreover, CD34 + MPs affect the expression of BCL2 and FAS and related proteins and downregulate the hematopoietic differentiation program in both HL-60 and mononuclear cells. Our results indicate that MPs through activation of antioxidant enzymes in both homozygous and nonhomozygous cells might serve as a means for graft optimization and enhancement.


Assuntos
Antígenos CD34 , Apoptose , Micropartículas Derivadas de Células , Sangue Fetal , Células-Tronco Hematopoéticas , Estresse Oxidativo , Humanos , Sangue Fetal/citologia , Antígenos CD34/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Micropartículas Derivadas de Células/metabolismo , Células HL-60 , Peroxidação de Lipídeos , Leucócitos Mononucleares/metabolismo , Superóxido Dismutase/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Diseases ; 10(3)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35892736

RESUMO

Due to the multifactorial pathogenesis of sarcopenia, it is crucial to identify biomarkers that are risk factors for sarcopenia, and which therefore have a prognostic function. Aim: This narrative review aims to define a set of biomarkers associated with nutrition and sarcopenia. These biomarkers could contribute to individualized monitoring and enable preventive and therapeutic methods. Methods: Two electronic databases, PubMed and Google Scholar, were used. The search strategy was based on a controlled vocabulary (MeSH) and includes studies published up to February 2022. Discussion: Higher levels of serum uric acid are associated with higher handgrip strength and better muscle function in elderly people and, thus, may slow the progression of sarcopenia. Leptin, an adipokine secreted by adipose tissue, promotes the production of pro-inflammatory cytokines, which in turn lead to sarcopenia. This makes leptin a significant indirect biomarker for physical disability and sarcopenic obesity. Additionally, creatinine is a reliable biomarker for muscle mass status because of its easy accessibility and cost-effectiveness. Vitamin D status acts as a useful biomarker for predicting total mortality, hip fractures, early death, and the development of sarcopenia. Therefore, there is an increasing interest in dietary antioxidants and their effects on age-related losses of muscle mass and function. On the other hand, 3-Methylhistidine is a valuable biomarker for detecting increased muscle catabolism, as it is excreted through urine during muscle degradation. In addition, IGF-1, whose concentration in plasma is stimulated by food intake, is associated with the loss of skeletal muscle mass, which probably plays a crucial role in the progression of sarcopenia. Conclusions: Many nutritional biomarkers were found to be associated with sarcopenia, and can therefore be used as prognostic indexes and risk factors. Nutrition plays an important role in the prevention and management of sarcopenia, affecting muscle mass, strength, and function in elderly people.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA