Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Trop Anim Health Prod ; 55(5): 320, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747649

RESUMO

Climate change is altering ecological systems and poses a serious threat to human life. Climate change also seriously influences on livestock production by interfering with growth, reproduction, and production. Livestock, on the other hand, is blamed for being a significant contributor to climate change, emitting 8.1 gigatonnes of CO2-eq per year and accounting for two-thirds of global ammonia emissions. Methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) are three major greenhouse gases (GHG) that are primarily produced by enteric fermentation, feed production, diet management, and total product output. Ruminants account for three-quarters of total CO2-equivalent (CO2-eq) emissions from the livestock sector. The global dairy sector alone emits 4.0% of global anthropogenic GHG emissions. Hence, dairy farming needs to engage in environmental impact assessment. Public concern for a sustainable and environmentally friendly farming system is growing, resulting in the significant importance of food-based life cycle assessment (LCA). Over the last decade, LCA has been used in agriculture to assess total GHG emissions associated with products such as milk and manure. It includes the production of farm inputs, farm emissions, milk processing, transportation, consumer use, and waste. LCA studies on milk production would assist us in identifying the specific production processes/areas that contribute to excessive greenhouse gas emissions when producing milk and recommending appropriate mitigation strategies to be implemented for a clean, green, and resilient environment.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Animais , Humanos , Agricultura , Fazendas , Gado , Estágios do Ciclo de Vida
2.
Genome ; 65(4): 241-254, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34914549

RESUMO

Bos indicus cattle breeds have been naturally selected for thousands of years for disease resistance and thermo-tolerance. However, the genetic mechanisms underlying these specific inherited characteristics must be elucidated. Hence, in this study, a whole-genome comparative analysis of the Bos indicus cattle breeds Kangayam, Tharparkar, Sahiwal, Red Sindhi, and Hariana of the Indian subcontinent was conducted. Genetic variant identification analysis revealed 155 851 012 SNPs and 10 062 805 InDels in the mapped reads across all Bos indicus cattle breeds. The functional annotation of 17 252 genes that comprised both SNPs and InDels, with high functional impact on proteins, was carried out. The functional annotation results revealed the pathways involved in the innate immune response, including toll-like receptors, retinoic acid-inducible gene I-like receptors, NOD-like receptors, Jak-STAT signaling pathways, and non-synonymous variants in the candidate immune genes. We also identified several pathways involved in the heat shock response, hair and skin properties, oxidative stress response, osmotic stress response, thermal sweating, feed intake, metabolism, and non-synonymous variants in the candidate thermo-tolerant genes. These pathways and genes directly or indirectly contribute to the disease resistance and thermo-tolerance adaptations of Bos indicus cattle breeds.


Assuntos
Resistência à Doença , Termotolerância , Animais , Bovinos/genética , Resistência à Doença/genética , Genoma , Mutação INDEL , Polimorfismo de Nucleotídeo Único , Termotolerância/genética
3.
Genome ; 62(7): 489-501, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31071269

RESUMO

A better understanding of the biology of lactation, both in terms of gene expression and the identification of candidate genes for the production of milk and its components, is made possible by recent advances in RNA seq technology. The purpose of this study was to understand the synthesis of milk components and the molecular pathways involved, as well as to identify candidate genes for milk production traits within whole mammary transcriptomic datasets. We performed a meta-analysis of publically available RNA seq transcriptome datasets of mammary tissue/milk somatic cells. In total, 11 562 genes were commonly identified from all RNA seq based mammary gland transcriptomes. Functional annotation of commonly expressed genes revealed the molecular processes that contribute to the synthesis of fats, proteins, and lactose in mammary secretory cells and the molecular pathways responsible for milk synthesis. In addition, we identified several candidate genes responsible for milk production traits and constructed a gene regulatory network for RNA seq data. In conclusion, this study provides a basic understanding of the lactation biology of cows at the gene expression level.


Assuntos
Bovinos/genética , Lactação/genética , Glândulas Mamárias Animais , Transcriptoma , Animais , Feminino , Redes Reguladoras de Genes , Lactose/biossíntese , Proteínas do Leite/biossíntese , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA