Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 153: 109835, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147180

RESUMO

Galectin-4 belongs to the galactoside-binding protein family and is a type of tandem repeat galectin. Despite previous studies indicating its importance in fish immunology, a comprehensive investigation is necessary to fully understand its role in immunomodulatory functions and cellular dynamics. Therefore, this study aimed to explore the immunomodulatory functions of galectin-4 with a particular focus on its antimicrobial and cellular proliferative properties. The open reading frame of PhGal4 spans 1092 base pairs and encodes a soluble protein of 363 amino acids with a theoretical isoelectric point (IEP) of 6.39 and a molecular weight of 39.411 kDa. Spatial expression analysis under normal physiological conditions revealed ubiquitous expression of PhGal4 across all examined tissues, with the highest level observed in intestinal tissue. Upon stimulation with poly I:C, LPS, and L. garvieae, a significant increase (p < 0.05) in PhGal4 expression was observed in both blood and spleen tissues. Subsequent subcellular localization assay demonstrated that PhGal4 was predominantly localized in the cytoplasm. The recombinant PhGal4 (rPhGal4) exhibited specific binding capabilities to pathogen-associated molecular patterns (PAMPs), including LPS and peptidoglycan, but not poly I:C. The rPhGal4 negatively affected the bacterial growth kinetics. Additionally, rPhGal4 demonstrated complete hemagglutination of fish erythrocytes, which could be inhibited by the presence of D-galactose and α-lactose. The overexpression of PhGal4 in FHM epithelial cells demonstrated a significant suppression of viral replication during VHSV infection. Furthermore, the in vitro scratch assay and WST-1 assay demonstrated a wound healing effect of PhGal4 overexpression in FHM cells, potentially achieved through the promotion of cell proliferation by activating genes involved in cell cycle regulation. In conclusion, the responsive expression to immune stimuli, antimicrobial properties, and cell proliferation promotion of PhGal4 suggest that it plays a crucial role in immunomodulation and cellular dynamics of red-lip mullet. The findings in this study shed light on the multifunctional nature of galectin-4 in teleost fish.


Assuntos
Proliferação de Células , Proteínas de Peixes , Galectina 4 , Smegmamorpha , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Proliferação de Células/efeitos dos fármacos , Galectina 4/genética , Galectina 4/imunologia , Galectina 4/química , Smegmamorpha/imunologia , Smegmamorpha/genética , Imunidade Inata/genética , Filogenia , Sequência de Aminoácidos , Perfilação da Expressão Gênica/veterinária , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Poli I-C/farmacologia , Alinhamento de Sequência/veterinária , Lipopolissacarídeos/farmacologia
2.
Parasitol Int ; 94: 102734, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36708802

RESUMO

A new myxosporean parasite, Ortholinea nupchi n. sp. (Myxozoa; Bivalvulida), was isolated from the urinary bladder of the olive flounder Paralichthys olivaceus cultured on Jeju Island, Korea. Mature spores were subspherical in the valvular and apical views and ellipsoidal in the sutural view. The spores measured 7.6 ± 0.5 µm in length, 6.7 ± 0.3 µm in thickness, and 7.3 ± 0.5 µm in width. Two pyriform polar capsules measured 3.2 ± 0.1 µm in length and 2.7 ± 0.1 µm in width and were located at the same level at the anterior half of the myxospores. The suture line was straight in the middle of the spores, and the surface ridges ranged between five and seven, forming an intricate pattern. The result of the 18S rDNA comparison showed ≤ 93.0% similarity with other Ortholinea species. The phylogenetic tree demonstrated that O. nupchi n. sp. was closest to O. auratae and clustered with oligochaete-infecting myxosporeans (OIM) having urinary system infection tropism. Based on the comparison of environmental and host factors in the phylogenetic groups of the OIM clade, we propose that the infection of O. nupchi n. sp. originated from marine oligochaetes.


Assuntos
Doenças dos Peixes , Linguado , Myxozoa , Doenças Parasitárias em Animais , Animais , Bexiga Urinária/parasitologia , Linguado/parasitologia , Filogenia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , República da Coreia , Esporos , DNA Ribossômico/genética , Doenças Parasitárias em Animais/epidemiologia , Doenças Parasitárias em Animais/parasitologia
3.
J Fish Dis ; 44(9): 1475-1479, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34181270

RESUMO

Enteromyxum leei is a causative agent of enteromyxosis, with a wide range of marine fish hosts. Recently, massive morbidity and mortality were caused by E. leei infection in cultured olive flounders in Korea. To reveal a relationship between E. leei abundance in culture water and the occurrence of parasite infection in host fish, we used a quantitative PCR assay targeting the 28S rDNA of E. leei in three fish farms (two where enteromyxosis had occurred and one where it did not) from April to November 2018. The gene of E. leei was detected at levels greater than 10 cells/L in the culture water where enteromyxosis occurred from July to September. Furthermore, 2 months after the detection in the water, the parasite gene (with more than 5,000 cells per 100 mg) was detected in fish intestine samples. However, in the fish farms where enteromyxosis had not occurred, the E. leei gene was detected at <10 cells in culture water (1 L) and fish intestine samples (100 mg). The quantification method used in this research provides a baseline of the infection timeline in olive flounder to develop effective management practices.


Assuntos
Doenças dos Peixes/parasitologia , Myxozoa/fisiologia , Doenças Parasitárias em Animais , Água/parasitologia , Animais , DNA Ribossômico , Pesqueiros , Linguado , Intestinos/parasitologia , Myxozoa/genética , Reação em Cadeia da Polimerase em Tempo Real , República da Coreia
4.
Korean J Parasitol ; 58(5): 593-597, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33202514

RESUMO

Kudoa septempunctata have been reported as a causative agent for acute transient gastrointestinal troubles after eating raw olive flounder (Paralichthys olivaceus). It raised public health concerns and quarantine control in several countries. Quantitative evaluation on viability of K. septempunctata is crucial to develop effective chemotherapeutics against it. A cytometry using fluorescent stains was employed to assess effect of three compounds on viability of K. septempunctata. Epigallocatechin gallate reduced markedly viability of K. septempunctata at 0.5 mM or more, and damaged K. septempunctata spores by producing cracks.


Assuntos
Catequina/análogos & derivados , Sobrevivência Celular/efeitos dos fármacos , Myxozoa/efeitos dos fármacos , Animais , Catequina/farmacologia , Linguado/parasitologia , Citometria de Fluxo , Doenças Transmitidas por Alimentos/parasitologia , Myxozoa/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA