Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Cureus ; 16(8): e67260, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39310420

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a hematologic malignancy characterized by aggressive proliferation and a poor prognosis. The objective of this study is to elucidate the specific role of complement factor D (CFD) in AML, with the aim of identifying robust prognostic markers for the disease. METHODS: We performed a systematic investigation on clinical significance and potential function of CFD in AML by using the R Programming Language with The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), The Human Protein Atlas (HPA), The University of ALabama at Birmingham CANcer data analysis Portal (UALCAN), Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier plotter, Cancer Cell Line Encyclopedia (CCLE) database, and Comprehensive Analysis on Multi-Omics of Immunotherapy in Pan-cancer (CAMOIP) database. The expression of CFD in AML patients was verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS: The expression of CFD was the highest in AML cells than in other tumor cell lines. The expression of CFD was also higher in AML patients than in the matched normal group. Compared with the low expression of the CFD group, high expression of CFD predicted better overall survival (OS) and lower tumor mutational burden (TMB) in AML patients. Moreover, a nomogram model based on CFD was successfully constructed to predict the OS of AML patients. Notably, the expression of CFD was associated with drug sensitivity and monocyte cell infiltration. CONCLUSION: CFD could serve as a potential OS prognostic biomarker and guide clinical treatment for AML.

2.
J Hazard Mater ; 479: 135514, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243542

RESUMO

The extensive use of antibiotics has created an urgent need to address antibiotic wastewater treatment, posing significant challenges for environmental protection and public health. Recent advances in the efficacy and mechanisms of conductive materials (CMs) for enhancing the anaerobic biological treatment of antibiotic pharmaceutical wastewater are reviewed. For the first time, the focus is on the various application forms of iron-based and carbon-based CMs in strengthening the anaerobic methanogenic system. This includes the use of single CMs such as zero-valent iron (ZVI), magnetite, biochar (BC), activated carbon (AC), and graphene (GP), as well as iron-based and carbon-based composite CMs with diverse structures. These structures include mixed, surface-loaded, and core-shell combinations, reflecting the development of CMs. Iron-based and carbon-based CMs promote the rapid removal of antibiotics through adsorption and enhanced biodegradation. They also mitigate the inhibitory effects of toxic pollutants on microbial activity and reduce the expression of antibiotic resistance genes (ARGs). Additionally, as effective electron carriers, these CMs enrich microorganisms with direct interspecies electron transfer (DIET) functions, accelerate interspecies electron transfer, and facilitate the conversion of organic matter into methane. Finally, this review proposes the use of advanced molecular detection technologies to clarify microbial ecology and metabolic mechanisms, along with microscopic characterization techniques for the modification of CMs. These methods can provide more direct evidence to analyze the mechanisms underlying the cooperative anaerobic treatment of refractory organic wastewater by CMs and microorganisms.


Assuntos
Antibacterianos , Ferro , Águas Residuárias , Poluentes Químicos da Água , Antibacterianos/química , Águas Residuárias/química , Anaerobiose , Ferro/química , Poluentes Químicos da Água/química , Carbono/química , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Purificação da Água/métodos
3.
Angew Chem Int Ed Engl ; : e202411173, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109442

RESUMO

The electrochemical propylene epoxidation reaction (PER) provides a promising route for ecofriendly propylene oxide (PO) production, instantly generating active halogen/oxygen species to alleviate chloride contamination inherent in traditional PER. However, the complex processes and unsatisfactory PO yield for current electrochemical PER falls short of meeting industrial application requirements. Herein, a spatial-coupling strategy over RuO2/Ti hollow-fiber penetration electrode (HPE) is adopted to facilitate efficient PO production, significantly improving PER performance to ampere level (achieving over 80 % PO faradaic efficiency and a maximum PO current density of 859 mA cm-2). The synergetic combination of the penetration effect of HPE and the spatial-coupled reaction sequence, enables the realization of ampere-level PO production with high specificity, exhibiting significant potentials for economically viable PER applications.

4.
Water Res ; 263: 122121, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094200

RESUMO

Magnetite (Fe3O4) is extensively applied to enhance efficacy of anaerobic biological treatment systems designed for refractory wastewater. However, the interaction between magnetite, organic pollutants and microorganisms in digestion solution is constrained by magnetic attraction. To overcome this limitation and prevent magnetite aggregation, the core-shell composite materials with carbon outer layer enveloping magnetite core particles (Fe3O4@C) were developed. The impact of Fe3O4@C with varying Fe3O4 mass ratios on the anaerobic methanogenesis capability in the treatment of chloramphenicol (CAP) wastewater was investigated. Experimental results demonstrated that Fe3O4@C not only enhanced chemical oxygen demand (COD) removal efficiency and biogas production by 2.42-13.18% and by 7.53%-23.25%, respectively, but also reduced the inhibition of microbial activity caused by toxic substances and the secretion of extracellular polymeric substances (EPS) by microorganisms responding to adverse environments. The reinforcing capability of Fe3O4@C increased with the rise in Fe3O4 content. Furthermore, High-throughput pyrosequencing illustrated that Fe3O4@C enhanced the relative abundance of Methanobacterium, a hydrogen-utilizing methanogen capable of participating in direct interspecies electron transfer (DIET), by 5%. Metagenomic analysis indicated that Fe3O4@C improved the decomposition of complex organics into simpler compounds by elevating functional genes encoding key enzymes associated with organic matter metabolism, acetogenesis, and hydrogenophilic methanogenesis pathways. These findings suggest that Fe3O4@C have the potential to strengthen both the hydrogenophilic methanogenesis and DIET processes. This insight offers a novel perspective on the anaerobic bioaugmentation of high-concentration refractory organic wastewater.


Assuntos
Cloranfenicol , Óxido Ferroso-Férrico , Metano , Águas Residuárias , Águas Residuárias/química , Óxido Ferroso-Férrico/química , Anaerobiose , Metano/metabolismo , Carbono , Eliminação de Resíduos Líquidos/métodos , Análise da Demanda Biológica de Oxigênio
5.
Am J Cancer Res ; 14(7): 3388-3403, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113880

RESUMO

The drug resistance is a major obstacle in acute B-lymphoblastic leukemia (B-ALL) treatment. Our previous study has indicated that increased levels of Cysteine-rich protein 61 (Cyr61) in the bone marrow can mitigate the chemosensitivity of B-ALL cells, though the specific source of Cyr61 in the bone marrow remains unknown. In this study, we aimed to investigate whether hypoxia can induce Cyr61 production in B-ALL cells, delineates the underlying mechanisms, and evaluates the effect of Cyr61 on the chemosensitivity of B-ALL cells under hypoxia conditions. The results indicate that hypoxia promotes Cyr61 production in B-ALL cells by activating the NF-κB pathway. Increased Cyr61 expression appears to reduce the chemosensitivity of B-ALL cell to vincristine (VCR) and daunorubicin (DNR) through autophagy under hypoxia. Notably, inhibition of Cyr61 restores the chemosensitivity of B-ALL cells to both chemotherapeutic agents. This study is the first time to report that hypoxia decreases the chemosensitivity of B-ALL cells by inducing Cyr61 production, suggesting that targeting Cyr61 or its associated pathways could potentially improve the clinical response of B-ALL patients.

6.
J Hazard Mater ; 477: 135423, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39106721

RESUMO

Infection with smut fungus like Ustilago maydis decreases crop yield via inducing gall formation. However, the in vitro impact of Ustilago spp. on plant growth and stress tolerance remains elusive. This study investigated the plant growth promotion and cadmium stress mitigation mechanisms of a filamentous fungus discovered on a cultural medium containing 25 µM CdCl2. ITS sequence alignment revealed 98.7 % similarity with Ustilago bromivora, naming the strain Ustilago sp. HFJ311 (HFJ311). Co-cultivation with HFJ311 significantly enhanced the growth of various plants, including Arabidopsis, tobacco, cabbage, carrot, rice, and maize, and improved Arabidopsis tolerance to abiotic stresses like salt and metal ions. HFJ311 increased chlorophyll and Fe contents in Arabidopsis shoots and enhanced root-to-shoot Fe translocation while decreasing root Fe concentration by approximately 70 %. Concurrently, HFJ311 reduced Cd accumulation in Arabidopsis by about 60 %, indicating its potential for bioremediation in Cd-contaminated soils. Additionally, HFJ311 stimulated IAA concentration by upregulating auxin biosynthesis genes. Overexpression of the Fe transporter IRT1 negated HFJ311's growth-promotion effects under Cd stress. These results suggest that HFJ311 stimulates plant growth and inhibits Cd uptake by enhancing Fe translocation and auxin biosynthesis while disrupting Fe absorption. Our findings offer a promising bioremediation strategy for sustainable agriculture and food security.


Assuntos
Arabidopsis , Cádmio , Ácidos Indolacéticos , Ferro , Ustilago , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Arabidopsis/crescimento & desenvolvimento , Cádmio/metabolismo , Ferro/metabolismo , Ustilago/metabolismo , Ustilago/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Transporte Biológico , Zea mays/microbiologia , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento
7.
Nat Commun ; 15(1): 6101, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030184

RESUMO

Synthesis of valuable chemicals from CO2 electroreduction in acidic media is highly desirable to overcome carbonation. However, suppressing the hydrogen evolution reaction in such proton-rich environments remains a considerable challenge. The current study demonstrates the use of a hollow fiber silver penetration electrode with hierarchical micro/nanostructures to enable CO2 reduction to CO in strong acids via balanced coordination of CO2 and K+/H+ supplies. Correspondingly, a CO faradaic efficiency of 95% is achieved at a partial current density as high as 4.3 A/cm2 in a pH = 1 solution of H2SO4 and KCl, sustaining 200 h of continuous electrolysis at a current density of 2 A/cm2 with over 85% single-pass conversion of CO2. The experimental results and density functional theory calculations suggest that the controllable CO2 feeding induced by the hollow fiber penetration configuration primarily coordinate the CO2/H+ balance on Ag active sites in strong acids, favoring CO2 activation and key intermediate *COOH formation, resulting in enhanced CO formation.

8.
Angew Chem Int Ed Engl ; : e202407612, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007237

RESUMO

The synthesis of multicarbon (C2+) products remains a substantial challenge in sustainable CO2 electroreduction owing to the need for sufficient current density and faradaic efficiency alongside carbon efficiency. Herein, we demonstrate ampere-level high-efficiency CO2 electroreduction to C2+ products in both neutral and strongly acidic (pH = 1) electrolytes using a hierarchical Cu hollow-fiber penetration electrode (HPE). High concentration of K+ could concurrently suppress hydrogen evolution reaction and facilitate C-C coupling, thereby promoting C2+ production in strong acid. By optimizing the K+ and H+ concentration and CO2 flow rate, a faradaic efficiency of 84.5% and a partial current density as high as 3.1 A cm-2 for C2+ products, alongside a single-pass carbon efficiency of 81.5% and stable electrolysis for 240 h were demonstrated in a strong acidic solution of H2SO4 and KCl (pH = 1). Experimental measurements and density functional theory simulations suggested that tensile-strained Cu HPE enhances the asymmetric C-C coupling to steer the selectivity and activity of C2+ products.

9.
Front Oncol ; 14: 1395784, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903711

RESUMO

Cervical cancer is the second most prevalent malignancy affecting women's health globally, and the number of morbidity and mortality from cervical cancer continues to rise worldwide. The 5-year survival rate of patients with recurrent or metastatic cervical cancer is significantly reduced, and existing treatment modalities have low efficacy and high adverse effects, so there is a strong need for new, effective, and well-tolerated therapies. Antibody-drug conjugates (ADCs) are a new targeted therapeutic modality that can efficiently kill tumor cells. This review aims to summarize the composition, research, and development history and mechanism of action of ADCs, to review the research progress of ADCs in the treatment of cervical cancer, and to summarize and prospect the application of ADCs.

10.
J Hazard Mater ; 474: 134701, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38824774

RESUMO

Coking wastewater (CWW) treatment is difficult due to its complex composition and high biological toxicity. Iron-carbon mediators was used to enhance the treatment of CWW through iron-carbon microelectrolysis (ICME). The results indicated that the removal rate of COD and phenolic compounds were enhanced by 24.1 % and 23.5 %, while biogas production and methane content were promoted by 50 % and 7 %. Microbial community analysis indicated that iron-carbon mediators had a transformative impact on the reactor's performance and dependability by enriching microorganisms involved in direct and indirect electron transfer, such as Anaerolineae and Methanothrix. The mediator also produced noteworthy gains in LB-EPS and TB-EPS, increasing by roughly 109.3 % and 211.6 %, respectively. PICRISt analysis demonstrated that iron-carbon mediators effectively augment the abundance of functional genes associated with metabolism, Citrate cycle, and EET pathway. This study provides a new approach for CWW treatment.


Assuntos
Reatores Biológicos , Carbono , Coque , Ferro , Águas Residuárias , Águas Residuárias/química , Ferro/metabolismo , Ferro/química , Carbono/química , Carbono/metabolismo , Metano/metabolismo , Eliminação de Resíduos Líquidos/métodos , Biocombustíveis , Análise da Demanda Biológica de Oxigênio , Resíduos Industriais , Poluentes Químicos da Água/metabolismo , Fenóis/metabolismo , Bactérias/metabolismo , Bactérias/genética
11.
J Cancer Res Clin Oncol ; 150(3): 159, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530432

RESUMO

PURPOSE: Chemoresistance is a major challenge for acute lymphoblastic leukemia (ALL) treatment. Cysteine-rich protein 61 (Cyr61) plays an important role in drug resistance modulation of tumor cells, and Cyr61 levels are increased in the bone marrow of patients with ALL and contribute to ALL cell survival. However, the effect of Cyr61 on B cell acute lymphoblastic leukemia (B-ALL) cell chemosensitivity and the regulatory mechanisms underlying Cyr61 production in bone marrow remain unknown. METHODS: Nalm-6 and Reh human B-ALL cell lines were used in this study. Cyr61 levels were assessed using quantitative real-time PCR (qRT-PCR), western blot analysis, and enzyme-linked immunosorbent assay. The effect of Cyr61 on B-ALL cell chemosensitivity to daunorubicin (DNR) was evaluated using cell viability and flow cytometry analyses. The regulatory mechanisms of Cyr61 production in bone marrow were examined using qRT-PCR and western blot analysis. RESULTS: Cyr61 knockdown and overexpression increased and decreased the chemosensitivity of B-ALL cells to DNR, respectively. Cyr61 attenuated chemotherapeutic drug-induced apoptosis by upregulating B cell lymphoma-2. Notably, DNR induced DNA damage response and increased Cyr61 secretion in B-ALL cells through the ataxia telangiectasia mutated (ATM)-dependent nuclear factor kappa B pathway. CONCLUSION: DNR induces Cyr61 production in B-ALL cells, and increased Cyr61 levels reduce the chemosensitivity of B-ALL cells. Consequently, targeting Cyr61 or related ATM signaling pathway may present a promising treatment strategy to enhance the chemosensitivity of patients with B-ALL.


Assuntos
Proteína Rica em Cisteína 61 , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , NF-kappa B/metabolismo
12.
ACS Appl Mater Interfaces ; 16(4): 4600-4605, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38242173

RESUMO

Photocatalytic conversion of methane (CH4) to value-added chemicals using H2O as the oxidant under mild conditions is a desired sustainable pathway for synthesizing commodity chemicals. However, controlling product selectivity while maintaining high product yields is greatly challenging. Herein, we develop a highly efficient strategy, based on the precise control of the types of nitrogen dopants, and the design of photocatalysts, to achieve high selectivity and productivity of oxygenates via CH4 photocatalytic conversion. The primary product (methanol) is obtained in a high yield of 159.8 µmol·g-1·h-1 and 47.7% selectivity, and the selectivity of oxygenate compounds reached 92.5%. The unique hollow porous structure and substituted nitrogen sites of nitrogen-doped TiO2 synergistically promote its photo-oxidation performance. Furthermore, in situ attenuated total reflectance Fourier transform infrared spectroscopy provides direct evidence of the key intermediates and their evolution for producing methanol and multicarbon oxygenates. This study provides insights into the mechanism of photocatalytic CH4 conversion.

13.
ACS Omega ; 8(49): 46569-46576, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107883

RESUMO

As one of the most important derivatives of propylene, the production of propylene oxide (PO) is severely restricted. The traditional chlorohydrin process is being eliminated due to environmental concerns, while processes such as Halcon and hydrogen peroxide epoxidation are limited by cost and efficiency, making it difficult to meet market demand. Therefore, achieving PO production through clean and efficient technologies has received extensive attention, and halogen-mediated electrochemical epoxidation of alkene is considered to be a desirable technology for the production of alkylene oxide. In this work, we used electrochemical methods to synthesize PO in halogen-mediated systems based on a RuO2-loaded Ti (RuO2/Ti) anode and screened out two potential mediated systems of chlorine (Cl) and bromine (Br) for the electrosynthesis of PO. At a current density of 100 mA·cm-2, both Cl- and Br-mediated systems delivered PO Faradaic efficiencies of more than 80%. In particular, the Br-mediated system obtained PO Faradaic efficiencies of more than 90% at lower potentials (≤1.5 V vs RHE) with better electrode structure durability. Furthermore, detailed product distribution investigations and DFT calculations suggested hypohalous acid molecules as key reaction intermediates in both Cl- and Br-mediated systems. This work presents a green and efficient PO production route with halogen-mediated electrochemical epoxidation of propylene driven by renewable electricity, exhibiting promising potential to replace the traditional chlorohydrin process.

14.
Front Oncol ; 13: 1260706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023229

RESUMO

In this report, we present a case study of a 64-year-old female who was diagnosed with gastrointestinal stromal tumors (GISTs) and subsequently developed liver metastases despite undergoing radical resection. Next-generation sequencing (NGS) assays indicated that the tumor lacked KIT/PDGFRA/SDH/RAS-P (RAS pathways, RAS-P) mutations, thereby classifying this patient as quadruple WT GIST (qGIST). Treatment with imatinib was initiated, and after 2.5 months, recurrence of the tumor and multiple metastases around the surgical site were observed. Consequently, the patient was switched to sunitinib treatment and responded well. Although she responded well to sunitinib, the patient died of tumor dissemination within 4 months. This case study highlights the potential efficacy of imatinib and the VEGFR-TKI sunitinib in treating qGIST patients harboring a TP53 missense mutation.

15.
J Hazard Mater ; 460: 132389, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666169

RESUMO

ZVI@C-MP is a novel composite particle consisting of zero-valent iron (ZVI) enclosed within a carbon shell. The purpose of this composite material is to enhance the anaerobic treatment of wastewater containing chloramphenicol (CAP). This approach aims to address the initial challenge of excessive corrosion experienced by ZVI, followed by its subsequent passivation and inactivation. ZVI@C-MP was synthesized through a hydrothermal process and calcination, with montmorillonite as binder, it exhibits stability, iron-carbon microelectrolysis (ICME) properties, and strong adsorption for CAP. Its ICME actions include releasing iron ions (0.70 mg/L) and COD (11.3 mg/L), generating hydrogen (3.82%), and raising the pH from 6.30 to 7.71. With minimal structural changes, it achieved release equilibrium. ZVI@C-MP boasts high removal efficiency of CAP (98.96%) by adsorption, attributed to surface characteristics (surface area: 167.985 m2/g; pore volume: 0.248 cm3/g). The addition of ZVI@C-MP increases COD removal (10.16%), methane production (72.86%), and reduces extracellular polymeric substances (EPS) from 70.58 to 52.72 mg/g MLVSS. It reduces microbial by-products and toxic effects, enhancing CAP biodegradation and microbial metabolic activity. ZVI@C-MP's electrical conductivity and biocompatibility bolster functional flora for interspecies electron transfer. It's a novel approach to antibiotic wastewater treatment.


Assuntos
Bentonita , Cloranfenicol , Águas Residuárias , Anaerobiose , Antibacterianos , Carbono , Ferro
16.
Sci Total Environ ; 904: 166796, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666346

RESUMO

Anaerobic treatment of chloramphenicol wastewater holds significant promise due to its potential for bioenergy generation. However, the high concentration of organic matter and residual toxic substances in the wastewater severely inhibit the activity of microorganisms. In this study, a three-dimensional graphene aerogel (GA), as a conductive material with high specific surface area (114.942 m2 g-1) and pore volume (0.352 cm3 g-1), was synthesized and its role in the efficiency and related mechanism for EGSB reactor to treat chloramphenicol wastewater was verified. The results indicated that synergy effects of GA for Chemical Oxygen Demand (COD) removal (increased by 8.17 %), chloramphenicol (CAP) removal (increased by 4.43 %) and methane production (increased by 70.29 %). Furthermore, GA increased the average particle size of anaerobic granular sludge (AGS) and promoted AGS to secrete more redox active substances. Microbial community analysis revealed that GA increased the relative abundance of functional bacteria and archaea, specifically Syntrophomonas, Geobacter, Methanothrix, and Methanolinea. These microbial species can participate in direct interspecific electron transfer (DIET). This research serves as a theoretical foundation for the application of GA in mitigating the toxic impact of refractory organic substances, such as antibiotics, on microorganisms during anaerobic treatment processes.


Assuntos
Grafite , Águas Residuárias , Grafite/toxicidade , Eliminação de Resíduos Líquidos/métodos , Cloranfenicol/toxicidade , Anaerobiose , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Metano
17.
Front Microbiol ; 14: 1190650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588884

RESUMO

Exponential increase in photovoltaic installations arouses concerns regarding the impacts of large-scale solar power plants on dryland ecosystems. While the effects of photovoltaic panels on soil moisture content and plant biomass in arid ecosystems have been recognized, little is known about their influence on soil microbial communities. Here, we employed a combination of quantitative PCR, high-throughput sequencing, and soil property analysis to investigate the responses of soil microbial communities to solar panel installation. We also report on the responses of plant communities within the same solar farm. Our findings showed that soil microbial communities responded differently to the shading and precipitation-alternation effects of the photovoltaic panels in an arid ecosystem. By redirecting rainwater to the lower side, photovoltaic panels stimulated vegetation biomass and soil total organic carbon content in the middle and in front of the panels, positively contributing to carbon storage. The shade provided by the panels promoted the co-occurrence of soil microbes but inhibited the abundance of 16S rRNA gene in the soil. Increase in precipitation reduced 18S rRNA gene abundance, whereas decrease in precipitation led to decline in plant aboveground biomass, soil prokaryotic community alpha diversity, and dehydrogenase activity under the panels. These findings highlight the crucial role of precipitation in maintaining plant and soil microbial diversities in dryland ecosystems and are essential for estimating the potential risks of large-scale solar power plants on local and global climate change in the long term.

18.
Small ; 19(35): e2301338, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37183302

RESUMO

Electroreduction of CO2 to CO is a promising route for greenhouse gas resource utilization, but it still suffers from impractical current density and poor durability. Here, a nanosheet shell (NS) vertically standing on the Ag hollow fiber (NS@Ag HF) surface formed by electrochemical surface reconstruction is reported. As-prepared NS@Ag HF as a gas penetration electrode exhibited a high CO faradaic efficiency of 97% at an ultra-high current density of 2.0 A cm-2 with a sustained performance for continuous >200 h operation. The experimental and theoretical studies reveal that promoted surface electronic structures of NS@Ag HF by the nanosheets not only suppress the competitive hydrogen evolution reaction but also facilitate the CO2 reduction kinetics. This work provides a feasible strategy for fabricating robust catalysts for highly efficient and stable CO2 reduction.

19.
ACS Appl Mater Interfaces ; 15(8): 10785-10794, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802488

RESUMO

Transition metal catalyst-based electrocatalytic CO2 reduction is a highly attractive approach to fulfill the renewable energy storage and a negative carbon cycle. However, it remains a great challenge for the earth-abundant VIII transition metal catalysts to achieve highly selective, active, and stable CO2 electroreduction. Herein, bamboo-like carbon nanotubes that anchor both Ni nanoclusters and atomically dispersed Ni-N-C sites (NiNCNT) are developed for exclusive CO2 conversion to CO at stable industry-relevant current densities. Through optimization of gas-liquid-catalyst interphases via hydrophobic modulation, NiNCNT exhibits as high as Faradaic efficiency (FE) of 99.3% for CO formation at a current density of -300 mA·cm-2 (-0.35 V vs reversible hydrogen electrode (RHE)), and even an extremely high CO partial current density (jCO) of -457 mA·cm-2 corresponding to a CO FE of 91.4% at -0.48 V vs RHE. Such superior CO2 electroreduction performance is ascribed to the enhanced electron transfer and local electron density of Ni 3d orbitals upon incorporation of Ni nanoclusters, which facilitates the formation of the COOH* intermediate.

20.
Angew Chem Int Ed Engl ; 62(15): e202218664, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36787047

RESUMO

Using sunlight to produce valuable chemicals and fuels from carbon dioxide (CO2 ), i.e., artificial photosynthesis (AP) is a promising strategy to achieve solar energy storage and a negative carbon cycle. However, selective synthesis of C2 compounds with a high CO2 conversion rate remains challenging for current AP technologies. We performed CO2 photoelectroreduction over a graphene/silicon carbide (SiC) catalyst under simulated solar irradiation with ethanol (C2 H5 OH) selectivity of>99 % and a CO2 conversion rate of up to 17.1 mmol gcat -1 h-1 with sustained performance. Experimental and theoretical investigations indicated an optimal interfacial layer to facilitate the transfer of photogenerated electrons from the SiC substrate to the few-layer graphene overlayer, which also favored an efficient CO2 to C2 H5 OH conversion pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA