Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Med Technol ; 4: 851927, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35434702

RESUMO

With the ongoing miniaturization of surgical instruments, the ability to apply large forces on tissues for resection becomes challenging and the risk of buckling becomes more real. In an effort to allow for high force application in slender instruments, in this study, we have investigated using a hydraulic pressure wave (COMSOL model) and developed an innovative 5F cardiac catheter (L = 1,000 mm) that allows for applying high forces up to 9.0 ± 0.2 N on target tissues without buckling. The catheter uses high-speed pressure waves to transfer high-force impulses through a slender flexible shaft consisted of a flat wire coil, a double braid, and a nylon outer coating. The handle allows for single-handed operation of the catheter with easy adjusting of the input impulse characteristic, including frequency (1-10 Hz), time and number of strokes using a solenoid actuator, and easy connection of an off-the-shelf inflator for catheter filling. In a proof-of-principle experiment, we illustrated that the Wave catheter was able to penetrate a phantom model of a coronary Chronic Total Occlusion (CTO) manufactured out of hydroxyapatite and gelatin. It was found that the time until puncture decreased from 80 ± 5.4 s to 7.8 ± 0.4 s, for a stroke frequency of 1-10 Hz, respectively. The number of strikes until puncture was approximately constant at 80 ± 5.4, 76.7 ± 2.6, and 77.7 ± 3.9 for the different stroke frequencies. With the development of the Wave catheter, first steps have been made toward high force application through slender shafts.

2.
Med Eng Phys ; 67: 88-95, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30981610

RESUMO

A major challenge during minimally invasive surgery is transfer of high forces through small, flexible instruments, such as needles and catheters, because of their low buckling resistance. In this study, we determined the feasibility of using a Newton's Cradle-inspired catheter (patented) to transfer high-force impulses. Exerting a high-force impulse on the tissue increases the critical buckling load and can prevent buckling. The system comprised an input plunger onto which the impulse is given, a (flexible) shaft filled with Ø2 mm stainless steel balls, and an output plunger to transfer the impulse to the target tissue. In the proof-of-principle experiment, the effect on efficiency of clearance (0.1, 0.2, and 0.3 mm), length (100, 200, and 300 mm), shaft type (rigid vs. flexible), curve angle (0, 45, 90, 135, and 180°), and curve radius (20, 40, 60, and 100 mm) was determined. The catheter delivered forces of 6 N without buckling. The average impulse efficiency of the system was 35%, which can be further increased by optimizing the design. This technology is promising for high-force delivery in miniature medical devices during minimally invasive surgery.


Assuntos
Catéteres , Fenômenos Mecânicos , Desenho de Equipamento , Estudos de Viabilidade
3.
Opt Lett ; 40(2): 205-8, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25679845

RESUMO

In EUV lithography, the absorption of EUV light causes wavefront distortion that deteriorates the imaging process. An adaptive optics system has been developed ["Adaptive optics to counteract thermal aberrations," Ph.D. thesis (TU Delft, 2013)] to correct for this distortion using an active mirror (AM). This AM is thermally actuated by absorbing an irradiance profile exposed by a projector onto the AM. Due to thermal conductivity and bimorph-like deformation of the AM, the relation between actuation profile and actuated shape is not trivial. Therefore, this Letter describes how actuation profiles are obtained to generate Zernike shapes. These actuation profiles have been obtained by a finite-element-based optimization procedure. Furthermore, these actuation profiles are exposed to the AM, and the resulting deformations are measured. This Letter shows actuated Zernike shapes with purities higher than 0.9 for most actuation profiles. In addition, superimposed actuation profiles resulted in superimposed Zernike shapes, showing linearity needed to apply modal wavefront correction. Therefore, this approach can be used to obtain actuation profiles for this AM concept, which can be used for highly precise wavefront correction.

4.
Opt Lett ; 39(15): 4603-6, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25078239

RESUMO

The use of optical fibers presents several advantages with respect to free-space optical transport regarding source-frequency delivery to individual heterodyne interferometers. Unfortunately, fiber delivery to individual coaxial heterodyne interferometers leads to an increase of (periodic) nonlinearity in the measurement, because transporting coaxial frequencies through one optical fiber leads to frequency mixing. Coaxial beams thus require delivery via free-space transportation methods. In contrast, the heterodyne interferometer concept discussed in this Letter is based on separated source frequencies, which allow for fiber delivery without additional nonlinearity. This investigation analyzes the influence of external disturbances acting on the two fibers during delivery, causing asymmetry in phase between the two fibers (first-order effect), and irradiance fluctuations (second-order effect). Experiments using electro-optic phase modulation and acousto-optic irradiance modulation confirmed that the interferometer-concept can measure with sub-nanometer uncertainty using fiber delivered source frequencies, enabling fully fiber-coupled heterodyne displacement interferometers.

5.
Opt Lett ; 39(7): 1949-52, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24686646

RESUMO

Periodic nonlinearity (PNL) in displacement interferometers is a systematic error source that limits measurement accuracy. The PNL of coaxial heterodyne interferometers is highly influenced by the polarization state and orientation of the source frequencies. In this Letter, we investigate this error source and discuss two interferometer designs, designed at TU Delft, that showed very low levels of PNL when subjected to any polarization state and/or polarization orientation. In the experiments, quarter-wave plates (qwps) and half-wave plates (hwps) were used to manipulate the polarization state and polarization orientation, respectively. Results from a commercial coaxial system showed first-order PNL exceeding 10 nm (together with higher order PNL) when the system ceased operation at around ±15° hwp rotation or ±20° qwp rotation. The two "Delft interferometers," however, continued operation beyond these maxima and obtained first-order PNLs in the order of several picometers, without showing higher order PNLs. The major advantage of these interferometers, beside their high linearity, is that they can be fully fiber coupled and thus allow for a modular system buildup.

6.
Opt Express ; 21(15): 17920-30, 2013 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-23938664

RESUMO

Many error sources can affect the accuracy of displacement measuring interferometer systems. In heterodyne interferometry two laser source frequencies constitute the finally detected wavefront. When the wavefronts of these source frequencies are non-ideal and one of them walks off the detector, the shape of the detected wavefront will vary. This leads to a change in measured phase at the detector resulting in increased measurement uncertainty. A new wavefront measurement tool described in this publication measures the relative phase difference between the two wavefronts of the two source frequencies of a coaxial heterodyne laser source as used in commercial heterodyne interferometer systems. The proposed measurement method uses standard commercial optics and operates with the same phase measurement equipment that is normally used for heterodyne displacement interferometry. In the presented method a bare tip of a multimode fiber represents the receiving detection aperture and is used for locally sampling the wavefront during a line scan. The difference in phase between the beating frequency of the scanning fiber and a reference beating frequency that results from integration over the entire beam, is used for the reconstruction of the wavefront. The method shows to have a phase resolution in the order of ~25 pm or ~λ/25000 for λ 632.8 nm, and a spatial resolution of ~60 µm at a repeatability better than 1 nm over one week.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Imageamento Tridimensional/instrumentação , Interferometria/instrumentação , Lentes , Nanotecnologia/instrumentação , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
7.
Opt Lett ; 36(18): 3584-6, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21931398

RESUMO

Displacement interferometry is widely used for accurately characterizing nanometer and subnanometer displacements in many applications. In many modern systems, fiber delivery is desired to limit optical alignment and remove heat sources from the system, but fiber delivery can exacerbate common interferometric measurement problems, such as periodic nonlinearity, and account for fiber-induced drift. In this Letter, we describe a novel, general Joo-type interferometer that inherently has an optical reference after any fiber delivery that eliminates fiber-induced drift. This interferometer demonstrated no detectable periodic nonlinearity in both free-space and fiber-delivered variants.

8.
Opt Express ; 18(2): 1159-65, 2010 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-20173939

RESUMO

A high resolution heterodyne laser interferometer without periodic nonlinearity for linear displacement measurements is described. It uses two spatially separated beams with an offset frequency and an interferometer configuration which has no mixed states to prevent polarization mixing. In this research, a simple interferometer configuration for both retroreflector and plane mirror targets which are both applicable to industrial applications was developed. Experimental results show there is no detectable periodic nonlinearity for both of the retro-reflector interferometer and plane mirror interferometer to the noise level of 20 pm. Additionally, the optical configuration has the benefit of doubling the measurement resolution when compared to its respective traditional counterparts. Because of non-symmetry in the plane mirror interferometer, a differential plane mirror interferometer to reduce the thermal error is also discussed.


Assuntos
Interferometria/instrumentação , Lasers , Lentes , Desenho de Equipamento , Análise de Falha de Equipamento , Dinâmica não Linear , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Opt Express ; 18(2): 1373-9, 2010 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-20173964

RESUMO

Accurate and traceable length metrology is employed by laser frequency stabilization. This paper describes a laser frequency stabilization technique as a secondary standard with a fractional frequency stability of 5.2x10(-10) with 2 mW of power, suitable for practical applications. The feedback stabilization is driven by an intrinsic mixed mode signal, caused by nonlinear optical phenomena with adjacent modes. The mixed mode signals are described theoretically and experimentally verified.


Assuntos
Desenho Assistido por Computador , Lasers de Gás , Modelos Teóricos , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Retroalimentação , Dinâmica não Linear , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Appl Opt ; 48(9): 1733-40, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19305472

RESUMO

We describe two different, double-sided interferometer designs for measuring material stability. Both designs are balanced interferometers where the only optical path difference is the sample and the reference beams are located within the interferometer. One interferometer is a double-pass design, whereas the other is a single-pass system. Based on a tolerancing analysis, the single-pass system is less susceptible to initial component misalignment and motions during experiments. This single-pass interferometer was tested with an 86 nm thin-film silver sample for both short-term repeatability and long-term stability. In 66 repeatability tests of 30 min each, the mean measured drift rate was less than 1 pm/h rms. In two long-term tests (>9 h), the mean drift rate was less than 1.1 pm/h, which shows good agreement between the short- and long-term measurements. In these experiments, the mean measured length change was 2 nm rms.

11.
Opt Lett ; 34(3): 386-8, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19183667

RESUMO

We describe a simple heterodyne laser interferometer that has subnanometer periodic errors and is applicable to industrial fields. Two spatially separated beams can reduce the periodic errors, and the use of a right-angle prism makes the optical configuration much simpler than previous interferometers. Moreover, the optical resolution can be enhanced by a factor of 2, because the phase change direction is opposite between reference and measurement signals. Experiments have demonstrated the periodic errors are less than 0.15 nm owing to the frequency mixing of the optical source. The improvements for reducing the frequency mixing of the optical system are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA