Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Radiat Environ Biophys ; 57(2): 89-98, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29362875

RESUMO

The radiation detriment in ICRP 103 is defined as the product of the organ-specific risk coefficient and the damage that may be associated with a cancer type or hereditary effect. This is used to indicate a weighted risk according to the radiation sensitivity of different organs and the severity of damage that may possibly arise. While the risk refers to radiation exposure parameters, the extent of damage is independent of radiation. The parameters that are not affected by radiation are lethality, impairment of quality of life, and reduced life expectancy, which are considered as quantities associated with the severity of disease or damage. The damage and thus the detriment appear to be mostly affected by lethality, which is the quotient of the age-standardized mortality rate to the incidence rate. The analysis of the detriment presented in this paper focuses on the influence of the lethality on the detriment from 1980 to 2012 in the USA and Germany. While the lethality in this period covering more than three decades has decreased approximately linearly by 30% (both USA and Germany), within the same period the detriment declined only by 13% in the USA and by 15% in Germany. If only based on these two countries, an update on the detriment parameters with reference to 2007, when ICRP 103 was released, would result in a reduced weighted risk, i.e. the radiation detriment would be reduced by 10 to 15% from originally 5.7% per Sv for the whole population to roughly 5% per Sv.


Assuntos
Modelos Estatísticos , Neoplasias Induzidas por Radiação/etiologia , Humanos , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/mortalidade , Especificidade de Órgãos , Qualidade de Vida , Proteção Radiológica , Medição de Risco
2.
Rev Sci Instrum ; 86(2): 023303, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25725832

RESUMO

A compact, highly efficient single-particle counting detector for ions of keV/u kinetic energy, movable by a long-stroke mechanical translation stage, has been developed at the Max-Planck-Institut für Kernphysik (Max Planck Institute for Nuclear Physics, MPIK). Both, detector and translation mechanics, can operate at ambient temperatures down to ∼10 K and consist fully of ultra-high vacuum compatible, high-temperature bakeable, and non-magnetic materials. The set-up is designed to meet the technical demands of MPIK's Cryogenic Storage Ring. We present a series of functional tests that demonstrate full suitability for this application and characterise the set-up with regard to its particle detection efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA