Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Comput Vis (2013) ; 8331: 138-147, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-31915754

RESUMO

Parsing 2D radiographs into anatomical regions is a challenging task with many applications. In the clinic, scans routinely include anterior-posterior (AP) and lateral (LAT) view radiographs. Since these orthogonal views provide complementary anatomic information, an integrated analysis can afford the greatest localization accuracy. To solve this integration we propose automatic landmark candidate detection, pruned by a learned geometric consensus detector model and refined by fitting a hierarchical active appearance organ model (H-AAM). Our main contribution is twofold. First, we propose a probabilistic joint consensus detection model which learns how landmarks in either or both views predict landmark locations in a given view. Second, we refine landmarks by fitting a joint H-AAM that learns how landmark arrangement and image appearance can help predict across views. This increases accuracy and robustness to anatomic variation. All steps require just seconds to compute and compared to processing the scouts separately, joint processing reduces mean landmark distance error from 27.3 mm to 15.7 mm in LAT view and from 12.7 mm to 11.2 mm in the AP view. The errors are comparable to human expert inter-observer variability and suitable for clinical applications such as personalized scan planning for dose reduction. We assess our method using a database of scout CT scans from 93 subjects with widely varying pathology.

2.
IEEE Trans Image Process ; 18(8): 1859-72, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19389697

RESUMO

Depending on implementation, active contours have been classified as geometric or parametric active contours. Parametric contours, irrespective of representation, are known to suffer from the problem of irregular bunching and spacing out of curve points during the curve evolution. In a spline-based implementation of active contours, this leads to occasional formation of loops locally, and subsequently the curve blows up due to instabilities. In this paper, we analyze the reason for this problem and propose a solution to alleviate the same. We propose an ordinary differential equation (ODE) for controlling the curve parametrization during evolution by including a tangential force. We show that the solution of the proposed ODE is bounded. We demonstrate the effectiveness of the proposed method for segmentation and tracking tasks on closed as well as open contours.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA