Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 9(51): 44423-44428, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29185697

RESUMO

Two new donor-acceptor (D-A)-substituted S,N-heteroacene-based molecules were developed and investigated as hole-transporting material (HTM) for perovskite solar cells (PSCs). Optical and electrochemical characterization brought out that the energy levels of both HTMs are suitable for their use in PSCs. Consequently, a power-conversion efficiency of 17.7% and 16.1% was achieved from PSCs involving the HTM-1 and HTM-2, respectively. The optoelectronic properties in terms of series resistance, conductivity, and charge carrier recombination were further examined to unfold the potential of these new HTMs. Time-resolved photoluminescence spectroscopy brought out that the hole injection from the valence band of perovskite into HTMs follows the trend, which is in accordance with the position of the highest occupied molecular orbital. Overall, our findings underline the potential of S,N-heteroacene co-oligomers as promising HTM candidates for PSCs.

2.
ChemSusChem ; 9(5): 433-8, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26813331

RESUMO

We developed a new donor-π-acceptor-type hole-transport material (HTMs) incorporating S,N-heteropentacene as π-spacer, triarylamine as donor, and dicyanovinylene as acceptor. In addition to appropriate frontier molecular orbital energies, the new HTM showed high photo absorptivity in the visible region. Without the use of p-dopants, solution-processed mixed perovskite devices using the HTM achieved power conversion efficiencies of up to 16.9% and high photocurrents of up to 22.2 mA cm(-2). These results demonstrate that heteroacene can be an excellent building block to prepare alternative HTMs for perovskite solar cells and hold promise for further advancement through fine-tuning the molecular structure.


Assuntos
Compostos de Cálcio/química , Naftacenos/química , Óxidos/química , Energia Solar , Titânio/química , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA