Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39329737

RESUMO

Acute brain injury (ABI) remains one of the leading causes of death and disability world-wide. Its treatment is challenging due to the heterogeneity of the mechanisms involved and the variability among individuals. This systematic review aims at evaluating the impact of anti-histone treatments on outcomes in ABI patients and experimental animals and defining the trend of nucleosome levels in biological samples post injury. We performed a search in Pubmed/Medline and Embase databases for randomized controlled trials and cohort studies involving humans or experimental settings with various causes of ABI. We formulated the search using the PICO method, considering ABI patients or animal models as population (P), comparing pharmacological and non-pharmacological therapy targeting the nucleosome as Intervention (I) to standard of care or no treatment as Control (C). The outcome (O) was mortality or functional outcome in experimental animals and patients affected by ABI undergoing anti-NET treatments. We identified 28 studies from 1246 articles, of which 7 were experimental studies and 21 were human clinical studies. Among these studies, only four assessed the effect of anti-NET therapy on circulating markers. Three of them were preclinical and reported better outcome in the interventional arm compared to the control arm. All the studies observed a significant reduction in circulating NET-derived products. NETosis could be a target for new treatments. Monitoring NET markers in blood and cerebrospinal fluid might predict mortality and long-term outcomes. However, longitudinal studies and randomized controlled trials are warranted to fully evaluate their potential, as current evidence is limited.


Assuntos
Lesões Encefálicas , Humanos , Lesões Encefálicas/metabolismo , Lesões Encefálicas/sangue , Lesões Encefálicas/terapia , Animais , Armadilhas Extracelulares/metabolismo , Nucleossomos/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangue
2.
PLoS One ; 19(8): e0309208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39178224

RESUMO

Natural Language Processing (NLP) is a subset of artificial intelligence that enables machines to understand and respond to human language through Large Language Models (LLMs)‥ These models have diverse applications in fields such as medical research, scientific writing, and publishing, but concerns such as hallucination, ethical issues, bias, and cybersecurity need to be addressed. To understand the scientific community's understanding and perspective on the role of Artificial Intelligence (AI) in research and authorship, a survey was designed for corresponding authors in top medical journals. An online survey was conducted from July 13th, 2023, to September 1st, 2023, using the SurveyMonkey web instrument, and the population of interest were corresponding authors who published in 2022 in the 15 highest-impact medical journals, as ranked by the Journal Citation Report. The survey link has been sent to all the identified corresponding authors by mail. A total of 266 authors answered, and 236 entered the final analysis. Most of the researchers (40.6%) reported having moderate familiarity with artificial intelligence, while a minority (4.4%) had no associated knowledge. Furthermore, the vast majority (79.0%) believe that artificial intelligence will play a major role in the future of research. Of note, no correlation between academic metrics and artificial intelligence knowledge or confidence was found. The results indicate that although researchers have varying degrees of familiarity with artificial intelligence, its use in scientific research is still in its early phases. Despite lacking formal AI training, many scholars publishing in high-impact journals have started integrating such technologies into their projects, including rephrasing, translation, and proofreading tasks. Efforts should focus on providing training for their effective use, establishing guidelines by journal editors, and creating software applications that bundle multiple integrated tools into a single platform.


Assuntos
Inteligência Artificial , Autoria , Pesquisa Biomédica , Publicações Periódicas como Assunto , Humanos , Inquéritos e Questionários , Publicações Periódicas como Assunto/estatística & dados numéricos , Processamento de Linguagem Natural
3.
Clin Nutr ; 43(9): 1993-1996, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053327

RESUMO

BACKGROUND & AIMS: The most adequate amount of protein that should be administered to critically ill patients is still debated and diverging findings are recently accumulating. We hypothesized that the effect of protein administration might depend on the amount of muscle mass. METHODS: A secondary analysis of a single-centre prospective observational study of body composition in critically ill patients. Mechanically-ventilated subjects with an expected intensive care unit (ICU) stay >72 h were enrolled. Within 24 h from ICU admission, bioimpedance-derived muscle mass (BIA MM) and rectus femoris cross-sectional area (RF CSA) were measured. The amount of proteins and calories administered on the 7th ICU day was recorded. RESULTS: We enrolled 94 subjects (65 males, actual body weight 72.9 ± 14.4 Kg, BMI 26.0 ± 4.8 kg/m2). Actual body weight was only weakly related to BIA MM (R = 0.478, p < 0.001) and not related to RF CSA (R = 0.114, p = 0.276). A higher protein intake was associated with a reduced mortality in the highest quartile of BIA MM (OR 0.68 [0.46; 0.99] per each 10 g of proteins administered) and in the third (OR 0.74 [0.57; 0.98]) and highest quartile of RF CSA (OR 0.68 [0.48; 0.96]). CONCLUSION: A higher protein intake was associated with lower ICU mortality only in patients admitted with a higher muscle mass, as either assessed by BIA or muscle ultrasound.


Assuntos
Composição Corporal , Estado Terminal , Proteínas Alimentares , Unidades de Terapia Intensiva , Humanos , Masculino , Estado Terminal/terapia , Estudos Prospectivos , Composição Corporal/efeitos dos fármacos , Feminino , Pessoa de Meia-Idade , Proteínas Alimentares/administração & dosagem , Idoso , Impedância Elétrica , Respiração Artificial , Músculo Esquelético/efeitos dos fármacos , Ingestão de Energia
4.
Cells ; 13(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38727320

RESUMO

Cardiac arrest survivors suffer the repercussions of anoxic brain injury, a critical factor influencing long-term prognosis. This injury is characterised by profound and enduring metabolic impairment. Ketone bodies, an alternative energetic resource in physiological states such as exercise, fasting, and extended starvation, are avidly taken up and used by the brain. Both the ketogenic diet and exogenous ketone supplementation have been associated with neuroprotective effects across a spectrum of conditions. These include refractory epilepsy, neurodegenerative disorders, cognitive impairment, focal cerebral ischemia, and traumatic brain injuries. Beyond this, ketone bodies possess a plethora of attributes that appear to be particularly favourable after cardiac arrest. These encompass anti-inflammatory effects, the attenuation of oxidative stress, the improvement of mitochondrial function, a glucose-sparing effect, and the enhancement of cardiac function. The aim of this manuscript is to appraise pertinent scientific literature on the topic through a narrative review. We aim to encapsulate the existing evidence and underscore the potential therapeutic value of ketone bodies in the context of cardiac arrest to provide a rationale for their use in forthcoming translational research efforts.


Assuntos
Parada Cardíaca , Corpos Cetônicos , Corpos Cetônicos/metabolismo , Humanos , Parada Cardíaca/metabolismo , Animais , Dieta Cetogênica
6.
Crit Care ; 28(1): 104, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561829

RESUMO

Severe acute brain injuries, stemming from trauma, ischemia or hemorrhage, remain a significant global healthcare concern due to their association with high morbidity and mortality rates. Accurate assessment of secondary brain injuries severity is pivotal for tailor adequate therapies in such patients. Together with neurological examination and brain imaging, monitoring of systemic secondary brain injuries is relatively straightforward and should be implemented in all patients, according to local resources. Cerebral secondary injuries involve factors like brain compliance loss, tissue hypoxia, seizures, metabolic disturbances and neuroinflammation. In this viewpoint, we have considered the combination of specific noninvasive and invasive monitoring tools to better understand the mechanisms behind the occurrence of these events and enhance treatment customization, such as intracranial pressure monitoring, brain oxygenation assessment and metabolic monitoring. These tools enable precise intervention, contributing to improved care quality for severe brain injury patients. The future entails more sophisticated technologies, necessitating knowledge, interdisciplinary collaboration and resource allocation, with a focus on patient-centered care and rigorous validation through clinical trials.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Adulto , Humanos , Cuidados Críticos/métodos , Pressão Intracraniana , Lesões Encefálicas/terapia , Lesões Encefálicas/complicações , Encéfalo , Monitorização Fisiológica/métodos
7.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474253

RESUMO

The brain's unique characteristics make it exceptionally susceptible to oxidative stress, which arises from an imbalance between reactive oxygen species (ROS) production, reactive nitrogen species (RNS) production, and antioxidant defense mechanisms. This review explores the factors contributing to the brain's vascular tone's vulnerability in the presence of oxidative damage, which can be of clinical interest in critically ill patients or those presenting acute brain injuries. The brain's high metabolic rate and inefficient electron transport chain in mitochondria lead to significant ROS generation. Moreover, non-replicating neuronal cells and low repair capacity increase susceptibility to oxidative insult. ROS can influence cerebral vascular tone and permeability, potentially impacting cerebral autoregulation. Different ROS species, including superoxide and hydrogen peroxide, exhibit vasodilatory or vasoconstrictive effects on cerebral blood vessels. RNS, particularly NO and peroxynitrite, also exert vasoactive effects. This review further investigates the neuroprotective effects of antioxidants, including superoxide dismutase (SOD), vitamin C, vitamin E, and the glutathione redox system. Various studies suggest that these antioxidants could be used as adjunct therapies to protect the cerebral vascular tone under conditions of high oxidative stress. Nevertheless, more extensive research is required to comprehensively grasp the relationship between oxidative stress and cerebrovascular tone, and explore the potential benefits of antioxidants as adjunctive therapies in critical illnesses and acute brain injuries.


Assuntos
Lesões Encefálicas , Oxigênio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Oxigênio/farmacologia , Nitrogênio/farmacologia , Estresse Oxidativo , Antioxidantes/farmacologia , Espécies Reativas de Nitrogênio/metabolismo , Niacinamida/farmacologia , Lesões Encefálicas/tratamento farmacológico
8.
Brain Sci ; 14(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38391692

RESUMO

Traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) are critical neurological conditions that necessitate specialized care in the Intensive Care Unit (ICU). Managing cerebral perfusion pressure (CPP) and mean arterial pressure (MAP) is of primary importance in these patients. To maintain targeted MAP and CPP, vasopressors and/or inotropes are commonly used. However, their effects on cerebral oxygenation are not fully understood. The aim of this review is to provide an up-to date review regarding the current uses and pathophysiological issues related to the use of vasopressors and inotropes in TBI and SAH patients. According to our findings, despite achieving similar hemodynamic parameters and CPP, the effects of various vasopressors and inotropes on cerebral oxygenation, local CBF and metabolism are heterogeneous. Therefore, a more accurate understanding of the cerebral activity of these medications is crucial for optimizing patient management in the ICU setting.

9.
Ann Med Surg (Lond) ; 86(1): 539-544, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222739

RESUMO

Introduction: Acute liver failure (ALF) is a rapidly progressing, life-threatening syndrome characterized by liver-related coagulopathy and hepatic encephalopathy (HE). Given that higher HE grades correlate with poorer outcomes, clinical management of ALF necessitates close neurological monitoring. The primary objective of this case report is to highlight the diagnostic value of utilizing multimodal neuromonitoring (MNM) in a patient suffering from ALF. Case report: A 56-year-old male patient with a history of chronic alcoholism, without prior chronic liver disease, and recent acetaminophen use was admitted to the hospital due to fatigue and presenting with a mild flapping tremor. The primary hypothesis was an acute hepatic injury caused by acetaminophen intoxication. In the following hours, the patient's condition deteriorated, accompanied by neurological decline and rising ammonia levels. The patient's neurological status was closely monitored using MNM. Bilaterally altered pupillary light reflex assessed by decreasing in the Neurological Pupil Index values, using automated pupillometry, initially suggested severe brain oedema. However, ultrasound measurements of the optic nerve sheath diameter showed normal values in both eyes, P2/P1 noninvasive intracranial pressure waveform assessment was within normal ranges and the cerebral computed tomography-scan revealed no signs of cerebral swelling. Increased middle cerebral artery velocities measured by Transcranial Doppler and the initiation of electroencephalography monitoring yielded the presence of status epilepticus. Discussion: The utilization of MNM facilitated a more comprehensive understanding of the mechanisms underlying the patient's clinical deterioration in the setting of HE. Nonetheless, future studies are needed to show feasibility and to yield valuable insights that can enhance the outcomes for patients with HE using such an approach. Given the absence of specific guidelines in this particular context, it is advisable for physicians to give further consideration to the incorporation of MNM in the management of unconscious patients with ALF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA