Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Methods ; 20(1): 123, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138524

RESUMO

BACKGROUND: CRISPR Cas9 and Cas12a are the two most frequently used programmable nucleases reported in plant systems. There is now a wide range of component parts for both which likely have varying degrees of effectiveness and potentially applicability to different species. Our aim was to develop and optimise Cas9 and Cas12a based systems for highly efficient genome editing in the monocotyledons barley and wheat and produce a user-friendly toolbox facilitating simplex and multiplex editing in the cereal community. RESULTS: We identified a Zea mays codon optimised Cas9 with 13 introns in conjunction with arrayed guides driven by U6 and U3 promoters as the best performer in barley where 100% of T0 plants were simultaneously edited in all three target genes. When this system was used in wheat > 90% of T0 plants were edited in all three subgenome targets. For Cas12a, an Arabidopsis codon optimised sequence with 8 introns gave the best editing efficiency in barley when combined with a tRNA based multiguide array, resulting in 90% mutant alleles in three simultaneously targeted genes. When we applied this Cas12a system in wheat 86% & 93% of T0 plants were mutated in two genes simultaneously targeted. We show that not all introns contribute equally to enhanced mutagenesis when inserted into a Cas12a coding sequence and that there is rationale for including multiple introns. We also show that the combined effect of two features which boost Cas12a mutagenesis efficiency (D156R mutation and introns) is more than the sum of the features applied separately. CONCLUSION: Based on the results of our testing, we describe and provide a GoldenGate modular cloning system for Cas9 and Cas12a use in barley and wheat. Proven Cas nuclease and guide expression cassette options found in the toolkit will facilitate highly efficient simplex and multiplex mutagenesis in both species. We incorporate GRF-GIF transformation boosting cassettes in wheat options to maximise workflow efficiency.

2.
Plant J ; 119(1): 266-282, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38605581

RESUMO

Brassica crops are susceptible to diseases which can be mitigated by breeding for resistance. MAMPs (microbe-associated molecular patterns) are conserved molecules of pathogens that elicit host defences known as pattern-triggered immunity (PTI). Necrosis and Ethylene-inducing peptide 1-like proteins (NLPs) are MAMPs found in a wide range of phytopathogens. We studied the response to BcNEP2, a representative NLP from Botrytis cinerea, and showed that it contributes to disease resistance in Brassica napus. To map regions conferring NLP response, we used the production of reactive oxygen species (ROS) induced during PTI across a population of diverse B. napus accessions for associative transcriptomics (AT), and bulk segregant analysis (BSA) on DNA pools created from a cross of NLP-responsive and non-responsive lines. In silico mapping with AT identified two peaks for NLP responsiveness on chromosomes A04 and C05 whereas the BSA identified one peak on A04. BSA delimited the region for NLP-responsiveness to 3 Mbp, containing ~245 genes on the Darmor-bzh reference genome and four co-segregating KASP markers were identified. The same pipeline with the ZS11 genome confirmed the highest-associated region on chromosome A04. Comparative BLAST analysis revealed unannotated clusters of receptor-like protein (RLP) homologues on ZS11 chromosome A04. However, no specific RLP homologue conferring NLP response could be identified. Our results also suggest that BR-SIGNALLING KINASE1 may be involved with modulating the NLP response. Overall, we demonstrate that responsiveness to NLP contributes to disease resistance in B. napus and define the associated genomic location. These results can have practical application in crop improvement.


Assuntos
Brassica napus , Resistência à Doença , Doenças das Plantas , Proteínas de Plantas , Brassica napus/genética , Brassica napus/microbiologia , Brassica napus/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Botrytis/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Peptídeos/metabolismo , Peptídeos/genética , Regulação da Expressão Gênica de Plantas , Mapeamento Cromossômico , Etilenos/metabolismo
3.
Theor Appl Genet ; 137(3): 65, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430276

RESUMO

KEY MESSAGE: Using associative transcriptomics, our study identifies genes conferring resistance to four diverse fungal pathogens in crops, emphasizing key genetic determinants of multi-pathogen resistance. Crops are affected by several pathogens, but these are rarely studied in parallel to identify common and unique genetic factors controlling diseases. Broad-spectrum quantitative disease resistance (QDR) is desirable for crop breeding as it confers resistance to several pathogen species. Here, we use associative transcriptomics (AT) to identify candidate gene loci associated with Brassica napus constitutive QDR to four contrasting fungal pathogens: Alternaria brassicicola, Botrytis cinerea, Pyrenopeziza brassicae, and Verticillium longisporum. We did not identify any shared loci associated with broad-spectrum QDR to fungal pathogens with contrasting lifestyles. Instead, we observed QDR dependent on the lifestyle of the pathogen-hemibiotrophic and necrotrophic pathogens had distinct QDR responses and associated loci, including some loci associated with early immunity. Furthermore, we identify a genomic deletion associated with resistance to V. longisporum and potentially broad-spectrum QDR. This is the first time AT has been used for several pathosystems simultaneously to identify host genetic loci involved in broad-spectrum QDR. We highlight constitutive expressed candidate loci for broad-spectrum QDR with no antagonistic effects on susceptibility to the other pathogens studies as candidates for crop breeding. In conclusion, this study represents an advancement in our understanding of broad-spectrum QDR in B. napus and is a significant resource for the scientific community.


Assuntos
Brassica napus , Resistência à Doença , Resistência à Doença/genética , Brassica napus/genética , Brassica napus/microbiologia , Melhoramento Vegetal
4.
Nat Commun ; 14(1): 7354, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963867

RESUMO

Most rust resistance genes thus far isolated from wheat have a very limited number of functional alleles. Here, we report the isolation of most of the alleles at wheat stem rust resistance gene locus SR9. The seven previously reported resistance alleles (Sr9a, Sr9b, Sr9d, Sr9e, Sr9f, Sr9g, and Sr9h) are characterised using a synergistic strategy. Loss-of-function mutants and/or transgenic complementation are used to confirm Sr9b, two haplotypes of Sr9e (Sr9e_h1 and Sr9e_h2), Sr9g, and Sr9h. Each allele encodes a highly related nucleotide-binding site leucine-rich repeat (NB-LRR) type immune receptor, containing an unusual long LRR domain, that confers resistance to a unique spectrum of isolates of the wheat stem rust pathogen. The only SR9 protein effective against stem rust pathogen race TTKSK (Ug99), SR9H, differs from SR9B by a single amino acid. SR9B and SR9G resistance proteins are also distinguished by only a single amino acid. The SR9 allelic series found in the B subgenome are orthologs of wheat stem rust resistance gene Sr21 located in the A subgenome with around 85% identity in protein sequences. Together, our results show that functional diversification of allelic variants at the SR9 locus involves single and multiple amino acid changes that recognize isolates of wheat stem rust.


Assuntos
Basidiomycota , Resistência à Doença , Mapeamento Cromossômico , Resistência à Doença/genética , Alelos , Haplótipos , Sequência de Aminoácidos , Basidiomycota/genética , Doenças das Plantas/genética
6.
Nat Genet ; 55(6): 921-926, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37217714

RESUMO

To safeguard bread wheat against pests and diseases, breeders have introduced over 200 resistance genes into its genome, thus nearly doubling the number of designated resistance genes in the wheat gene pool1. Isolating these genes facilitates their fast-tracking in breeding programs and incorporation into polygene stacks for more durable resistance. We cloned the stem rust resistance gene Sr43, which was crossed into bread wheat from the wild grass Thinopyrum elongatum2,3. Sr43 encodes an active protein kinase fused to two domains of unknown function. The gene, which is unique to the Triticeae, appears to have arisen through a gene fusion event 6.7 to 11.6 million years ago. Transgenic expression of Sr43 in wheat conferred high levels of resistance to a wide range of isolates of the pathogen causing stem rust, highlighting the potential value of Sr43 in resistance breeding and engineering.


Assuntos
Basidiomycota , Resistência à Doença , Resistência à Doença/genética , Doenças das Plantas/genética , Melhoramento Vegetal , Genes de Plantas , Basidiomycota/genética
8.
Nat Commun ; 14(1): 876, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797319

RESUMO

Grass pea (Lathyrus sativus L.) is a rich source of protein cultivated as an insurance crop in Ethiopia, Eritrea, India, Bangladesh, and Nepal. Its resilience to both drought and flooding makes it a promising crop for ensuring food security in a changing climate. The lack of genetic resources and the crop's association with the disease neurolathyrism have limited the cultivation of grass pea. Here, we present an annotated, long read-based assembly of the 6.5 Gbp L. sativus genome. Using this genome sequence, we have elucidated the biosynthetic pathway leading to the formation of the neurotoxin, ß-L-oxalyl-2,3-diaminopropionic acid (ß-L-ODAP). The final reaction of the pathway depends on an interaction between L. sativus acyl-activating enzyme 3 (LsAAE3) and a BAHD-acyltransferase (LsBOS) that form a metabolon activated by CoA to produce ß-L-ODAP. This provides valuable insight into the best approaches for developing varieties which produce substantially less toxin.


Assuntos
Diamino Aminoácidos , Lathyrus , Lathyrus/genética , Lathyrus/metabolismo , Diamino Aminoácidos/metabolismo , Neurotoxinas/metabolismo , Genômica
9.
Nat Plants ; 9(3): 385-392, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36797350

RESUMO

Since emerging in Brazil in 1985, wheat blast has spread throughout South America and recently appeared in Bangladesh and Zambia. Here we show that two wheat resistance genes, Rwt3 and Rwt4, acting as host-specificity barriers against non-Triticum blast pathotypes encode a nucleotide-binding leucine-rich repeat immune receptor and a tandem kinase, respectively. Molecular isolation of these genes will enable study of the molecular interaction between pathogen effector and host resistance genes.


Assuntos
Magnaporthe , Triticum , Triticum/genética , Triticum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Brasil , Bangladesh
10.
Sci Adv ; 8(19): eabn5907, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35544571

RESUMO

Plant and inflorescence architecture determine the yield potential of crops. Breeders have harnessed natural diversity for inflorescence architecture to improve yields, and induced genetic variation could provide further gains. Wheat is a vital source of protein and calories; however, little is known about the genes that regulate the development of its inflorescence. Here, we report the identification of semidominant alleles for a class III homeodomain-leucine zipper transcription factor, HOMEOBOX DOMAIN-2 (HB-2), on wheat A and D subgenomes, which generate more flower-bearing spikelets and enhance grain protein content. These alleles increase HB-2 expression by disrupting a microRNA 165/166 complementary site with conserved roles in plants; higher HB-2 expression is associated with modified leaf and vascular development and increased amino acid supply to the inflorescence during grain development. These findings enhance our understanding of genes that control wheat inflorescence development and introduce an approach to improve the nutritional quality of grain.


Assuntos
Proteínas de Grãos , MicroRNAs , Alelos , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Proteínas de Grãos/metabolismo , Inflorescência/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum
11.
Plant Biotechnol J ; 20(9): 1730-1742, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35562859

RESUMO

A resistance gene atlas is an integral component of the breeder's arsenal in the fight against evolving pathogens. Thanks to high-throughput sequencing, catalogues of resistance genes can be assembled even in crop species with large and polyploid genomes. Here, we report on capture sequencing and assembly of resistance gene homologs in a diversity panel of 907 winter wheat genotypes comprising ex situ genebank accessions and current elite cultivars. In addition, we use accurate long-read sequencing and chromosome conformation capture sequencing to construct a chromosome-scale genome sequence assembly of cv. Attraktion, an elite variety representative of European winter wheat. We illustrate the value of our resource for breeders and geneticists by (i) comparing the resistance gene complements in plant genetic resources and elite varieties and (ii) conducting genome-wide associations scans (GWAS) for the fungal diseases yellow rust and leaf rust using reference-based and reference-free GWAS approaches. The gene content under GWAS peaks was scrutinized in the assembly of cv. Attraktion.


Assuntos
Basidiomycota , Triticum , Basidiomycota/genética , Mapeamento Cromossômico , Cromossomos , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/genética , Triticum/microbiologia
12.
Front Plant Sci ; 13: 855707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432397

RESUMO

Broccoli cultivars that have enhanced accumulation of methionine-derived glucosinolates have been developed through the introgression of a novel allele of the MYB28 transcription factor from the wild species Brassica villosa. Through a novel k-mer approach, we characterised the extent of the introgression of unique B. villosa genome sequences into high glucosinolate broccoli genotypes. RNAseq analyses indicated that the introgression of the B. villosa MYB28 C2 allele resulted in the enhanced expression of the MYB28 transcription factor, and modified expression of genes associated with sulphate absorption and reduction, and methionine and glucosinolate biosynthesis when compared to standard broccoli. A adenine-thymine (AT) short tandem repeat (STR) was identified within the 5' untranslated region (UTR) B. villosa MYB28 allele that was absent from two divergent cultivated forms of Brassica oleracea, which may underpin the enhanced expression of B. villosa MYB28.

13.
Cells ; 11(8)2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35455953

RESUMO

The majority of released rye cultivars are susceptible to leaf rust because of a low level of resistance in the predominant hybrid rye-breeding gene pools Petkus and Carsten. To discover new sources of leaf rust resistance, we phenotyped a diverse panel of inbred lines from the less prevalent Gülzow germplasm using six distinct isolates of Puccinia recondita f. sp. secalis and found that 55 out of 92 lines were resistant to all isolates. By performing a genome-wide association study using 261,406 informative SNP markers, we identified five resistance-associated QTLs on chromosome arms 1RS, 1RL, 2RL, 5RL and 7RS. To identify candidate Puccinia recondita (Pr) resistance genes in these QTLs, we sequenced the rye nucleotide-binding leucine-rich repeat (NLR) intracellular immune receptor complement using a Triticeae NLR bait-library and PacBio® long-read single-molecule high-fidelity (HiFi) sequencing. Trait-genotype correlations across 10 resistant and 10 susceptible lines identified four candidate NLR-encoding Pr genes. One of these physically co-localized with molecular markers delimiting Pr3 on chromosome arm 1RS and the top-most resistance-associated QTL in the panel.


Assuntos
Basidiomycota , Secale , Basidiomycota/genética , Resistência à Doença/genética , Genes de Plantas , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Puccinia , Secale/genética
14.
Nat Commun ; 13(1): 1607, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338132

RESUMO

The wild relatives and progenitors of wheat have been widely used as sources of disease resistance (R) genes. Molecular identification and characterization of these R genes facilitates their manipulation and tracking in breeding programmes. Here, we develop a reference-quality genome assembly of the wild diploid wheat relative Aegilops sharonensis and use positional mapping, mutagenesis, RNA-Seq and transgenesis to identify the stem rust resistance gene Sr62, which has also been transferred to common wheat. This gene encodes a tandem kinase, homologues of which exist across multiple taxa in the plant kingdom. Stable Sr62 transgenic wheat lines show high levels of resistance against diverse isolates of the stem rust pathogen, highlighting the utility of Sr62 for deployment as part of a polygenic stack to maximize the durability of stem rust resistance.


Assuntos
Aegilops , Basidiomycota , Aegilops/genética , Basidiomycota/genética , Resistência à Doença/genética , Genes de Plantas/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
15.
Genes (Basel) ; 13(2)2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-35205241

RESUMO

Biparental recombinant inbred line (RIL) populations are sets of genetically stable lines and have a simple population structure that facilitates the dissection of the genetics of interesting traits. On the other hand, populations derived from multiparent intercrosses combine both greater diversity and higher numbers of recombination events than RILs. Here, we describe a simple population structure: a three-way recombinant inbred population combination. This structure was easy to produce and was a compromise between biparental and multiparent populations. We show that this structure had advantages when analyzing cultivar crosses, and could achieve a mapping resolution of a few genes.


Assuntos
Pisum sativum , Locos de Características Quantitativas , Mapeamento Cromossômico , Ligação Genética , Pisum sativum/genética , Fenótipo
16.
Plant J ; 110(1): 179-192, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34997796

RESUMO

Aegilops is a close relative of wheat (Triticum spp.), and Aegilops species in the section Sitopsis represent a rich reservoir of genetic diversity for the improvement of wheat. To understand their diversity and advance their utilization, we produced whole-genome assemblies of Aegilops longissima and Aegilops speltoides. Whole-genome comparative analysis, along with the recently sequenced Aegilops sharonensis genome, showed that the Ae. longissima and Ae. sharonensis genomes are highly similar and are most closely related to the wheat D subgenome. By contrast, the Ae. speltoides genome is more closely related to the B subgenome. Haplotype block analysis supported the idea that Ae. speltoides genome is closest to the wheat B subgenome, and highlighted variable and similar genomic regions between the three Aegilops species and wheat. Genome-wide analysis of nucleotide-binding leucine-rich repeat (NLR) genes revealed species-specific and lineage-specific NLR genes and variants, demonstrating the potential of Aegilops genomes for wheat improvement.


Assuntos
Aegilops , Aegilops/genética , Genoma de Planta/genética , Filogenia , Poaceae/genética , Triticum/genética
17.
Nat Biotechnol ; 40(3): 422-431, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34725503

RESUMO

Aegilops tauschii, the diploid wild progenitor of the D subgenome of bread wheat, is a reservoir of genetic diversity for improving bread wheat performance and environmental resilience. Here we sequenced 242 Ae. tauschii accessions and compared them to the wheat D subgenome to characterize genomic diversity. We found that a rare lineage of Ae. tauschii geographically restricted to present-day Georgia contributed to the wheat D subgenome in the independent hybridizations that gave rise to modern bread wheat. Through k-mer-based association mapping, we identified discrete genomic regions with candidate genes for disease and pest resistance and demonstrated their functional transfer into wheat by transgenesis and wide crossing, including the generation of a library of hexaploids incorporating diverse Ae. tauschii genomes. Exploiting the genomic diversity of the Ae. tauschii ancestral diploid genome permits rapid trait discovery and functional genetic validation in a hexaploid background amenable to breeding.


Assuntos
Aegilops , Aegilops/genética , Pão , Genômica , Metagenômica , Melhoramento Vegetal , Triticum/genética
18.
BMC Genomics ; 22(1): 539, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256693

RESUMO

BACKGROUND: Associative transcriptomics has been used extensively in Brassica napus to enable the rapid identification of markers correlated with traits of interest. However, within the important vegetable crop species, Brassica oleracea, the use of associative transcriptomics has been limited due to a lack of fixed genetic resources and the difficulties in generating material due to self-incompatibility. Within Brassica vegetables, the harvestable product can be vegetative or floral tissues and therefore synchronisation of the floral transition is an important goal for growers and breeders. Vernalisation is known to be a key determinant of the floral transition, yet how different vernalisation treatments influence flowering in B. oleracea is not well understood. RESULTS: Here, we present results from phenotyping a diverse set of 69 B. oleracea accessions for heading and flowering traits under different environmental conditions. We developed a new associative transcriptomics pipeline, and inferred and validated a population structure, for the phenotyped accessions. A genome-wide association study identified miR172D as a candidate for the vernalisation response. Gene expression marker association identified variation in expression of BoFLC.C2 as a further candidate for vernalisation response. CONCLUSIONS: This study describes a new pipeline for performing associative transcriptomics studies in B. oleracea. Using flowering time as an example trait, it provides insights into the genetic basis of vernalisation response in B. oleracea through associative transcriptomics and confirms its characterisation as a complex G x E trait. Candidate leads were identified in miR172D and BoFLC.C2. These results could facilitate marker-based breeding efforts to produce B. oleracea lines with more synchronous heading dates, potentially leading to improved yields.


Assuntos
Brassica napus , Brassica , Brassica/genética , Brassica napus/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Transcriptoma
19.
Nat Commun ; 12(1): 3378, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099713

RESUMO

The re-emergence of stem rust on wheat in Europe and Africa is reinforcing the ongoing need for durable resistance gene deployment. Here, we isolate from wheat, Sr26 and Sr61, with both genes independently introduced as alien chromosome introgressions from tall wheat grass (Thinopyrum ponticum). Mutational genomics and targeted exome capture identify Sr26 and Sr61 as separate single genes that encode unrelated (34.8%) nucleotide binding site leucine rich repeat proteins. Sr26 and Sr61 are each validated by transgenic complementation using endogenous and/or heterologous promoter sequences. Sr61 orthologs are absent from current Thinopyrum elongatum and wheat pan genome sequences, contrasting with Sr26 where homologues are present. Using gene-specific markers, we validate the presence of both genes on a single recombinant alien segment developed in wheat. The co-location of these genes on a small non-recombinogenic segment simplifies their deployment as a gene stack and potentially enhances their resistance durability.


Assuntos
Resistência à Doença/genética , Proteínas NLR/genética , Plantas Geneticamente Modificadas/microbiologia , Puccinia/patogenicidade , Triticum/microbiologia , Cromossomos de Plantas/genética , Genes de Plantas , Engenharia Genética , Marcadores Genéticos , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Caules de Planta/microbiologia , Plantas Geneticamente Modificadas/genética , Puccinia/isolamento & purificação , Triticum/genética
20.
Nat Commun ; 12(1): 2563, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963185

RESUMO

Non-random gene organization in eukaryotes plays a significant role in genome evolution. Here, we investigate the origin of a biosynthetic gene cluster for production of defence compounds in oat-the avenacin cluster. We elucidate the structure and organisation of this 12-gene cluster, characterise the last two missing pathway steps, and reconstitute the entire pathway in tobacco by transient expression. We show that the cluster has formed de novo since the divergence of oats in a subtelomeric region of the genome that lacks homology with other grasses, and that gene order is approximately colinear with the biosynthetic pathway. We speculate that the positioning of the late pathway genes furthest away from the telomere may mitigate against a 'self-poisoning' scenario in which toxic intermediates accumulate as a result of telomeric gene deletions. Our investigations reveal a striking example of adaptive evolution underpinned by remarkable genome plasticity.


Assuntos
Avena/genética , Resistência à Doença/genética , Redes e Vias Metabólicas/genética , Telômero/genética , Avena/metabolismo , Grão Comestível/genética , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Família Multigênica , RNA-Seq , Sequências Repetitivas de Ácido Nucleico , Saponinas/biossíntese , Saponinas/química , Saponinas/genética , Sintenia/genética , Nicotiana/metabolismo , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA