Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(12): e32790, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39005925

RESUMO

Ulcerative colitis (UC), an inflammatory disease affecting the colon and rectal mucosa, is characterized by chronic and heterogeneous behavior of unknown origin. The primary cause of UC is chronic inflammation, which is closely linked to the development of colorectal cancer. Sonchus arvensis L. (SAL), a plant consumed worldwide for its nutritional and medicinal properties, holds significance in this context. In this study, we employed the total flavone in SAL as a treatment for male C57BL/6 mice with UC. The cecal contents metabolic profile of C57BL/6 mice in different groups, including UC (group ML; n = 5), UC treated with aspirin (group AN; n = 5), UC treated with the total flavone in SAL (group FE; n = 5), and healthy male C57BL/6 mice (group CL; n = 5), was examined using UHPLC-Triple-TOF-MS. Through the identification of variations in key metabolites associated with UC and the exploration of their underlying biological mechanisms, our understanding of the pathological processes underlying this condition has been enhanced. This study identified a total of seventy-three metabolites that have a significant impact on UC. Notably, the composition of total flavone in SAL, a medication used for UC treatment, differs from that of aspirin due to the presence of four distinct metabolites (13,14-Dihydro-15-keto-PGE2, Prostaglandin I2 (PGI2), (20R,22R)-20,22-dihydroxycholesterol, and PS (18:1(9Z)/0:0)). These metabolites possess unique characteristics that set them apart. Moreover, the study identified a total of eleven pathways that were significantly enriched in mice with UC, including Aminoacyl-tRNA biosynthesis, Valine, leucine and isoleucine biosynthesis, Linoleic acid metabolism, PPAR signaling pathway, mTOR signaling pathway, Valine, leucine and isoleucine degradation, Lysine degradation, VEGF signaling pathway, Melanogenesis, Endocrine and other factor-regulated calcium reabsorption, and Cocaine addiction. These findings contribute to a better understanding of the metabolic variations in UC following total flavonoids of SAL therapy and provide valuable insights for the treatment of UC.Keywords: Ulcerative colitis; Total flavonoids of Sonchus arvensis L.; Key metabolites; Metabonomics; Cecal contents of male C57BL/6 mice.

2.
J Drug Target ; 31(5): 433-455, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36940208

RESUMO

New nanocarrier technologies are emerging, and they have great potential for improving drug delivery, targeting efficiency and bioavailability. Virus-like particles (VLPs) are natural nanoparticles from animal and plant viruses and bacteriophages. Hence, VLPs present several great advantages, such as morphological uniformity, biocompatibility, reduced toxicity and easy functionalisation. VLPs can deliver many active ingredients to the target tissue and have great potential as a nanocarrier to overcome the limitations associated with other nanoparticles. This review will focus primarily on the construction and applications of VLPs, particularly as a novel nanocarrier to deliver active ingredients. Herein, the main methods for the construction, purification and characterisation of VLPs, as well as various VLP-based materials used in delivery systems are summarised. The biological distribution of VLPs in drug delivery, phagocyte-mediated clearance and toxicity are also discussed.


Assuntos
Bacteriófagos , Nanopartículas , Animais , Sistemas de Liberação de Medicamentos/métodos
3.
Heliyon ; 9(3): e14168, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36923824

RESUMO

Sonchus arvensisL. (SA) is a traditional Chinese food and medicine termed "Ju Mai Cai". The aim of this study was to investigate the protective effects of an aqueous extract of SA on dextran sulfate sodium (DSS) - induced colitis in mice by adjusting the diversity of gut microbiota. Male C57BL/6 mice were randomly divided into four groups: CL (control group); ML group (DSS only); SA group (SA extract); and MS group (SA extract + DSS). The protective effect of SA on ulcerative disease was estimated by several analyses (i.e., body weight loss, diarrhea, bloody stools, disease activity index scores, and hematoxylin and eosin staining). The effect of SA on gut microbiota was determined by analysis of the 16S ribosomal RNA gene sequences. The results indicated that MS significantly attenuated the body weight loss. The disease activity index scores were markedly lower in the MS group versus in the ML group. Moreover, the length of the colon was significantly improved in the MS groups versus in the ML group. Pathological changes were markedly improved following the administration of SA to mice with DSS-induced ulcerative disease. The results of Beta diversity analysis revealed that the composition of gut microbiota was significantly different between groups. Taken together, the results indicated that SA extract may prevent ulcerative colitis.

4.
J Drug Target ; 29(8): 863-874, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33507113

RESUMO

Liposomes are among the most extensively applied drug carriers due to their excellent biocompatibility, controllable size and ease of modification. In the present study, we prepared untargeted liposomes (LP) and targeting liposomes modified with Arg-Gly-Asp (RGD-LP), and Doxorubicin Hydrochloride (DOX) or fluorescent probe was loaded. RGD-LP/DOX was identified to be uniformly spherical in size 131.2 ± 2.7 nm. Based on flow cytometry analysis and the confocal laser scanning microscopy, RGD-LP had a higher uptake into HRT-18 colorectal cancer cells than LP. Further, in vivo imaging study further suggested that RGD-LP could significantly increase the liposome accumulation in the tumour tissues of the mice bearing subcutaneous tumours. By investigating the targeting mechanism of RGD-LP, we found that they entered the cell via macropinocytosis. When loaded with DOX, RGD-LP exerted stronger tumour growth inhibitory activity against tumours of colorectal carcinoma compared to LP. Moreover, RGD-LP induced autophagy. Therefore, RGD-LP have the potential to be applied as a targeted colorectal carcinoma therapy.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Lipossomos/administração & dosagem , Oligopeptídeos/administração & dosagem , Animais , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Camundongos , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA