Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Kaohsiung J Med Sci ; 38(3): 230-243, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34931755

RESUMO

MicroRNAs (miRNAs) are abundant in neurons and play key roles in the function and development of the nervous system. This study focuses on the function of miR-379-5p in neurological function recovery during ischemic stroke. The expression of miR-379-5p in the serum of patients with ischemic stroke was determined. Human cerebral cortical neuron cells (HCN-2) were subjected to oxygen/glucose deprivation (OGD) to mimic an ischemic stroke in vitro, whereas mice subjected to middle cerebral artery occlusion (MCAO) were used as an animal model. The serum of patients with ischemic stroke and OGD-treated HCN-2 cells displayed a poor expression of miR-379-5p. Upregulation of miR-379-5p reduced the OGD-induced cell damage and decreased the expression of the autophagy marker protein Beclin1 in cells. Rapamycin, an autophagy activator, blocked the protective functions of miR-379-5p. Further, miR-379-5p directly bound to MAP3K2. MAP3K2 activated the JNK/c-Jun signaling pathway and suppressed the neuroprotective events mediated by miR-379-5p. The in vitro results were reproduced in vivo, where upregulation of miR-379-5p reduced neurological impairment and infarct size in MCAO-induced mice. This study suggested that miR-379-5p showed a neuroprotective effect on ischemic stroke and reduced autophagy of neurons through the suppression of MAP3K2 and the JNK/c-Jun axis.


Assuntos
Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , MAP Quinase Quinase Quinase 2/genética , Sistema de Sinalização das MAP Quinases , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Animais , Autofagia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais , Regulação para Cima
2.
Neural Regen Res ; 15(8): 1388-1396, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31997797

RESUMO

Appropriate autophagy has protective effects on ischemic nerve tissue, while excessive autophagy may cause cell death. The inflammatory response plays an important role in the survival of nerve cells and the recovery of neural tissue after ischemia. Many studies have found an interaction between autophagy and inflammation in the pathogenesis of ischemic stroke. This study outlines recent advances regarding the role of autophagy in the post-stroke inflammatory response as follows. (1) Autophagy inhibits inflammatory responses caused by ischemic stimulation through mTOR, the AMPK pathway, and inhibition of inflammasome activation. (2) Activation of inflammation triggers the formation of autophagosomes, and the upregulation of autophagy levels is marked by a significant increase in the autophagy-forming markers LC3-II and Beclin-1. Lipopolysaccharide stimulates microglia and inhibits ULK1 activity by direct phosphorylation of p38 MAPK, reducing the flux and autophagy level, thereby inducing inflammatory activity. (3) By blocking the activation of autophagy, the activation of inflammasomes can alleviate cerebral ischemic injury. Autophagy can also regulate the phenotypic alternation of microglia through the nuclear factor-κB pathway, which is beneficial to the recovery of neural tissue after ischemia. Studies have shown that some drugs such as resveratrol can exert neuroprotective effects by regulating the autophagy-inflammatory pathway. These studies suggest that the autophagy-inflammatory pathway may provide a new direction for the treatment of ischemic stroke.

3.
Neural Regen Res ; 10(9): 1433-40, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26604904

RESUMO

Our previous findings have demonstrated that autophagy regulation can alleviate the decline of learning and memory by eliminating deposition of extracellular beta-amyloid peptide (Aß) in the brain after stroke, but the exact mechanism is unclear. It is presumed that the regulation of beta-site APP-cleaving enzyme 1 (BACE1), the rate-limiting enzyme in metabolism of Aß, would be a key site. Neuro-2a/amyloid precursor protein 695 (APP695) cell models of cerebral ischemia were established by oxygen-glucose deprivation to investigate the effects of Rapamycin (an autophagy inducer) or 3-methyladenine (an autophagy inhibitor) on the expression of BACE1. Either oxygen-glucose deprivation or Rapamycin down-regulated the expression of BACE1 while 3-methyladenine up-regulated BACE1 expression. These results confirm that oxygen-glucose deprivation down-regulates BACE1 expression in Neuro-2a/APP695 cells through the introduction of autophagy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA