Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Allergy Clin Immunol Glob ; 3(3): 100259, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38779310

RESUMO

Background: The skin microbiome is disrupted in atopic dermatitis (AD). Existing research focuses on moderate to severe, unmedicated disease. Objective: We sought to investigate metagenomic- and culture-based bacterial strain-level differences in mild, medicated AD and the effects these have on human keratinocytes (HKs). Methods: Skin swabs from anterior forearms were collected from 20 pediatric participants (11 participants with AD sampled at lesional and nonlesional sites and 9 age- and sex-matched controls). Participants had primarily mild to moderate AD and maintained medication use. Samples were processed for microbial metagenomic sequencing and bacterial isolation. Isolates identified as Staphylococcus aureus were tested for enterotoxin production. HK cultures were treated with cell-free conditioned media from representative Staphylococcus species to measure barrier effects. Results: Metagenomic sequencing identified significant differences in microbiome composition between AD and control groups. Differences were seen at the species and strain levels for Staphylococci, with S aureus found only in participants with AD and differences in Staphylococcus epidermidis strains between control and AD swabs. These strains showed differences in toxin gene presence, which was confirmed in vitro for S aureus enterotoxins. The strain from the participant with the most severe AD produced enterotoxin B levels more than 100-fold higher than the other strains (P < .001). Strains also displayed differential effects on HK metabolism and barrier function. Conclusions: Strain-level differences in toxin genes from Staphylococcus strains may explain varying effects on HK, with S aureus and non-aureus strains negatively affecting viability and barrier function. These differences are likely important in AD pathogenesis.

2.
bioRxiv ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38645133

RESUMO

Background: Alterations in upper respiratory microbiomes have been implicated in shaping host health trajectories, including by limiting mucosal pathogen colonization. However, limited comparative studies of respiratory microbiome development and functioning across age groups have been performed. Herein, we perform shotgun metagenomic sequencing paired with pathogen inhibition assays to elucidate differences in nasal and oral microbiome composition and functioning across healthy 24-month-old infant (n=229) and adult (n=100) populations. Results: We find that beta diversity of nasal and oral microbiomes varies with age, with nasal microbiomes showing greater population-level variation compared to oral microbiomes. Infant microbiome alpha diversity was significantly lower across nasal samples and higher in oral samples, relative to adults. Accordingly, we demonstrate significant differences in genus- and species-level composition of microbiomes between sites and age groups. Antimicrobial resistome patterns likewise varied across body sites, with oral microbiomes showing higher resistance gene abundance compared to nasal microbiomes. Biosynthetic gene clusters encoding specialized metabolite production were found in higher abundance across infant oral microbiomes, relative to adults. Investigation of pathogen inhibition revealed greater inhibition of gram-negative and gram-positive bacteria by oral commensals, while nasal isolates had higher antifungal activity. Conclusions: In summary, we identify significant differences in the microbial communities inhabiting nasal and oral cavities of healthy infants relative to adults. These findings inform our understanding of the interactions impacting respiratory microbiome composition and functioning, with important implications for host health across the lifespan.

4.
Microbiol Spectr ; 11(1): e0418022, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36602383

RESUMO

The microorganisms inhabiting human skin must overcome numerous challenges that typically impede microbial growth, including low pH, osmotic pressure, and low nutrient availability. Yet the skin microbiota thrive on the skin and have adapted to these stressful conditions. The limited nutrients available for microbial use in this unique niche include those from host-derived sweat, sebum, and corneocytes. Here, we have developed physiologically relevant, synthetic skin-like growth media composed of compounds present in sweat and sebum. We find that skin-associated bacterial species exhibit unique growth profiles at different concentrations of artificial sweat and sebum. Most strains evaluated demonstrate a preference for high sweat concentrations, while the sebum preference is highly variable, suggesting that the capacity for sebum utilization may be a driver of the skin microbial community structure. In particular, the prominent skin commensal Staphylococcus epidermidis exhibits the strongest preference for sweat while growing equally well across sebum concentrations. Conversely, the growth of Corynebacterium kefirresidentii, another dominant skin microbiome member, is dependent on increasing concentrations of both sweat and sebum but only when sebum is available, suggesting a lipid requirement of this species. Furthermore, we observe that strains with similar growth profiles in the artificial media cluster by phylum, suggesting that phylogeny is a key factor in sweat and sebum use. Importantly, these findings provide an experimental rationale for why different skin microenvironments harbor distinct microbiome communities. In all, our study further emphasizes the importance of studying microorganisms in an ecologically relevant context, which is critical for our understanding of their physiology, ecology, and function on the skin. IMPORTANCE The human skin microbiome is adapted to survive and thrive in the harsh environment of the skin, which is low in nutrient availability. To study skin microorganisms in a system that mimics the natural skin environment, we developed and tested a physiologically relevant, synthetic skin-like growth medium that is composed of compounds found in the human skin secretions sweat and sebum. We find that most skin-associated bacterial species tested prefer high concentrations of artificial sweat but that artificial sebum concentration preference varies from species to species, suggesting that sebum utilization may be an important contributor to skin microbiome composition. This study demonstrates the utility of a skin-like growth medium, which can be applied to diverse microbiological systems, and underscores the importance of studying microorganisms in an ecologically relevant context.


Assuntos
Microbiota , Suor , Humanos , Suor/química , Sebo , Pele/microbiologia , Bactérias/genética
5.
Microbiol Spectr ; 11(1): e0357822, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36541755

RESUMO

Corynebacterium are a diverse genus and dominant member of the human skin microbiome. Recently, we reported that the most prevalent Corynebacterium species found on skin, including Corynebacterium tuberculostearicum and Corynebacterium kefirresidentii, comprise a narrow species complex despite the diversity of the genus. Here, we apply high-resolution phylogenomics and comparative genomics to describe the structure of the C. tuberculostearicum species complex and highlight genetic traits which are enriched or depleted in it relative to other Corynebacterium. Through metagenomic investigations, we also find that individual species within the complex can associate with specific body sites. Finally, we discover that one species from the complex, C. kefirresidentii, increases in relative abundance during atopic dermatitis flares, and show that most genomes of this species encode a colocalized set of putative virulence genes. IMPORTANCE Corynebacterium are commonly found bacteria on the human skin. In this study, we perform comparative genomics to gain insight into genetic traits which differentiate a phylogenetically related group of Corynebacterium, the Corynebacterium tuberculostearicum species complex, that includes the most prevalent species from the genus in skin microbiomes. After resolving the presence of distinct species within the complex, we applied metagenomic analysis to uncover biogeographic associations of individual species within the complex with specific body sites and discovered that one species, commonly found in the nares of individuals, increases in abundance across multiple body sites during atopic dermatitis flares.


Assuntos
Dermatite Atópica , Humanos , Corynebacterium/genética , Pele , Genômica
6.
mSystems ; 7(5): e0067722, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35968974

RESUMO

The skin microbiome is a key player in human health, with diverse functions ranging from defense against pathogens to education of the immune system. While recent studies have begun to shed light on the valuable role that skin microorganisms have in maintaining the skin barrier, a detailed understanding of the complex interactions that shape healthy skin microbial communities is limited. Cobamides, the vitamin B12 class of cofactor, are essential for organisms across the tree of life. Because this vitamin is only produced by a limited fraction of prokaryotes, cobamide sharing is predicted to mediate community dynamics within microbial communities. Here, we provide the first large-scale metagenomic assessment of cobamide biosynthesis and utilization in the skin microbiome. We show that while numerous and diverse taxa across the major bacterial phyla on the skin encode cobamide-dependent enzymes, relatively few species encode de novo cobamide biosynthesis. We show that cobamide producers and users are integrated into the network structure of microbial communities across the different microenvironments of the skin and that changes in microbiome community structure and diversity are associated with the abundance of cobamide producers in the Corynebacterium genus, for both healthy and diseased skin states. Finally, we find that de novo cobamide biosynthesis is enriched only in Corynebacterium species associated with hosts, including those prevalent on human skin. We confirm that the cofactor is produced in excess through quantification of cobamide production by human skin-associated species isolated in the laboratory. Taken together, our results reveal the potential for cobamide sharing within skin microbial communities, which we hypothesize mediates microbiome community dynamics and host interactions. IMPORTANCE The skin microbiome is essential for maintaining skin health and function. However, the microbial interactions that dictate microbiome structure, stability, and function are not well understood. Here, we investigate the biosynthesis and use of cobamides, a cofactor needed by many organisms but only produced by select prokaryotes, within the human skin microbiome. We found that while a large proportion of skin taxa encode cobamide-dependent enzymes, only a select few encode de novo cobamide biosynthesis. Further, the abundance of cobamide-producing Corynebacterium species is associated with skin microbiome diversity and structure, and within this genus, de novo biosynthesis is enriched in host-associated species compared to environment-associated species. These findings identify cobamides as a potential mediator of skin microbiome dynamics and skin health.


Assuntos
Cobamidas , Microbiota , Pele , Humanos , Bactérias/genética , Microbiota/genética , Vitamina B 12 , Vitaminas , Pele/microbiologia
7.
Cell Host Microbe ; 30(3): 279-280, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35271798

RESUMO

The skin microbiome is essential for skin function, yet the mechanisms responsible are only beginning to be uncovered. In this issue of Cell Host & Microbe, Zheng et al. demonstrate that a Staphylococcus epidermidis sphingomyelinase has a mutually beneficial role in supporting the skin barrier and promoting S. epidermidis colonization.


Assuntos
Microbiota , Staphylococcus epidermidis , Pele
8.
Infect Immun ; 89(4)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33468585

RESUMO

Human skin functions as a physical, chemical, and immune barrier against the external environment while also providing a protective niche for its resident microbiota, known as the skin microbiome. Cooperation between the microbiota, host skin cells, and the immune system is responsible for maintenance of skin health, and a disruption to this delicate balance, such as by pathogen invasion or a breach in the skin barrier, may lead to impaired skin function. In this minireview, we describe the role of the microbiome in microbe, host, and immune interactions under distinct skin states, including homeostasis, tissue repair, and wound infection. Furthermore, we highlight the growing number of diverse microbial metabolites and products that have been identified to mediate these interactions, particularly those involved in host-microbe communication and defensive symbiosis. We also address the contextual pathogenicity exhibited by many skin commensals and provide insight into future directions in the skin microbiome field.


Assuntos
Biomarcadores , Microbiota , Fenômenos Fisiológicos da Pele , Pele/microbiologia , Comunicação Celular , Metabolismo Energético , Homeostase , Interações Hospedeiro-Patógeno , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Especificidade de Órgãos , Cicatrização
9.
Oncotarget ; 7(49): 81223-81240, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27835898

RESUMO

Patients with liver metastases of colorectal cancer (CRCLM) have a poorer prognosis compared to colorectal cancer (CRC) patients in local stage. Evaluating the recurrence and overall survival of advanced patients is critical in improving disease treatment and clinical outcome. Here we investigated the expression pattern of USP33, a deubiquitinating enzyme, in both primary CRC tissues and liver metastases tissues. Univariate and multivariate analyses identified that low expression of USP33 in CRCLM tissues indicated high recurrence risk and poor overall prognosis. Overexpression of USP33 can significantly inhibit cell proliferation, migration, and invasion. On the other hand, USP33 knock-down promoted cell proliferation and invasion under SDF-1 stimulation; whereas dynasore (an internalization inhibitor) pretreatment in USP33 silencing cells showed a distinct antipromoting effect, revealing the participation of CXCR4 internalization in regulating tumor progress. Further results verified that USP33 can deubiquitinate ß-arrestin2, subsequently block the internalization of SDF-1-stimulated CXCR4, and disrupt ß-arrestin-dependent ERK activation. The existence and functions of ß-arrestin-dependent signaling have been previously determined in several Gs-coupled receptors, such as ß2-adrenergic receptor and angiotensin receptor subtype 1a; however, little is known about this in Gi-coupled receptors. Our study not only established USP33 as a novel prognosis biomarker in advanced CRCLM patients, but also highlighted the significance of ß-arrestin-dependent ERK signaling in cancer development.


Assuntos
Neoplasias Colorretais/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias Hepáticas/enzimologia , Transdução de Sinais , Ubiquitina Tiolesterase/metabolismo , beta-Arrestina 2/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Distribuição de Qui-Quadrado , China , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Progressão da Doença , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/terapia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Invasividade Neoplásica , Recidiva Local de Neoplasia , Modelos de Riscos Proporcionais , Interferência de RNA , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Estudos Retrospectivos , Fatores de Risco , Fatores de Tempo , Transfecção , Resultado do Tratamento , Ubiquitina Tiolesterase/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA