Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomater Appl ; 36(7): 1201-1212, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34918999

RESUMO

This study aimed to generate a novel biomatrix from the decellularized human parathyroid capsule using different methods and to compare the efficiency of decellularization in the means of cell removal, structural integrity and extracellular matrix preservation. The parathyroid capsules, which were carefully dissected from the parathyroid tissue, were randomly divided into four groups and then decellularized using three different protocols: freeze-thaw only, sodium dodecyl sulphate and Triton X-100 treatments after freeze-thawing. Quantitative DNA analysis, agarose gel electrophoresis, sulphated glycosaminoglycan assay, histological analysis, immunohistochemistry and scanning electron microscopy were used to observe the efficiency of parathyroid capsule decellularization and preservation of extracellular matrix components. Considering all the results, it can be said that only freeze-thawing is not an effective method in parathyroid capsule decellularization. When the tissue was treated with a detergent agent in addition to freeze-thawing, the amount of DNA decreased by 90% while sulphated glycosaminoglycan amount maintained 50% compared to untreated tissue. Comparing the effects of the two detergents on the preservation of extracellular matrix such as collagen and sulphated glycosaminoglycan, it was seen that the integrity of tissues treated with Triton X-100 was preserved more than tissues treated with sodium dodecyl sulphate. It is concluded that Triton X-100 treatment with freeze-thawing is the most suitable and effective method for decellularizing the human parathyroid capsule. The biomatrix obtained with this method can be applied in the transplantation of parathyroid tissue and other endocrine tissue types in the body.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Matriz Extracelular/química , Humanos , Octoxinol/química , Octoxinol/metabolismo , Octoxinol/farmacologia , Dodecilsulfato de Sódio/química , Dodecilsulfato de Sódio/metabolismo , Dodecilsulfato de Sódio/farmacologia , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA