Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(39): 28423-28454, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39247510

RESUMO

This study presents the discovery of a new series of N-phenylpyrrolamide inhibitors of bacterial DNA gyrase with improved antibacterial activity. The most potent inhibitors had low nanomolar IC50 values against Escherichia coli DNA gyrase (IC50; 2-20 nM) and E. coli topoisomerase IV (22i, IC50 = 143 nM). Importantly, none of the compounds showed activity against human DNA topoisomerase IIα, indicating selectivity for bacterial targets. Among the tested compounds, 22e emerged as the most effective against Gram-positive bacteria with minimum inhibitory concentration (MIC) values of 0.25 µg mL-1 against Staphylococcus aureus ATCC 29213 and MRSA, and 0.125 µg mL-1 against Enterococcus faecalis ATCC 29212. For Gram-negative bacteria, compounds 23b and 23c showed the greatest efficacy with MIC values ranging from 4 to 32 µg mL-1 against E. coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii ATCC 17978 and A. baumannii ATCC 19606. Notably, compound 23b showed promising activity against the clinically relevant Gram-negative pathogen Klebsiella pneumoniae ATCC 10031, with an MIC of 0.0625 µg mL-1. Furthermore, compounds 23a and 23c exhibited significantly lower susceptibility to resistance development compared to novobiocin in S. aureus ATCC 29213 and K. pneumoniae ATCC 10031. Overall, the most promising compounds of this series showed excellent on-target potency, marking a significant improvement over previous N-phenylpyrrolamide inhibitors.

2.
Front Microbiol ; 15: 1432475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39282555

RESUMO

A considerable number of antibacterial agents are derived from bacterial metabolites. Similarly, numerous known compounds that impede bacterial virulence stem from bacterial metabolites. Enteropathogenic Escherichia coli (EPEC) is a notable human pathogen causing intestinal infections, particularly affecting infant mortality in developing regions. These infections are characterized by microvilli effacement and intestinal epithelial lesions linked with aberrant actin polymerization. This study aimed to identify potential antivirulence compounds for EPEC infections among bacterial metabolites harvested from marine actinobacteria (Kocuria sp. and Rhodococcus spp.) from the Arctic Sea by the application of virulence-based screening assays. Moreover, we demonstrate the suitability of these antivirulence assays to screen actinobacteria extract fractions for the bioassay-guided identification of metabolites. We discovered a compound in the fifth fraction of a Kocuria strain that interferes with EPEC-induced actin polymerization without affecting growth. Furthermore, a growth-inhibiting compound was identified in the fifth fraction of a Rhodococcus strain. Our findings include the bioassay-guided identification, HPLC-MS-based dereplication, and isolation of a large phospholipid and a likely antimicrobial peptide, demonstrating the usefulness of this approach in screening for compounds capable of inhibiting EPEC virulence.

3.
Eur J Med Chem ; 278: 116823, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39236496

RESUMO

In this work, we describe an improved series of N-phenylpyrrolamide inhibitors that exhibit potent activity against DNA gyrase and are highly effective against high-priority gram-positive bacteria. The most potent compounds show low nanomolar IC50 values against Escherichia coli DNA gyrase, and in addition, compound 7c also inhibits E. coli topoisomerase IV in the nanomolar concentration range, making it a promising candidate for the development of potent dual inhibitors for these enzymes. All tested compounds show high selectivity towards the human isoform DNA topoisomerase IIα. Compounds 6a, 6d, 6e and 6f show MIC values between 0.031 and 0.0625 µg/mL against vancomycin-intermediate S. aureus (VISA) and Enterococcus faecalis strains. Compound 6g shows an inhibitory effect against the methicillin-resistant S. aureus strain (MRSA) with a MIC of 0.0625 µg/mL and against the E. faecalis strain with a MIC of 0.125 µg/mL. In a time-kill assay, compound 6d showed a dose-dependent bactericidal effect on the MRSA strain and achieved bactericidal activity at 8 × MIC after 8 h. The duration of the post-antibiotic effect (PAE) on the MRSA strain for compound 6d was 2 h, which corresponds to the PAE duration for ciprofloxacin. The compounds were not cytotoxic at effective concentrations, as determined in an MTS assay on the MCF-7 breast cancer cell line.


Assuntos
Antibacterianos , DNA Girase , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Inibidores da Topoisomerase II , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Humanos , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/síntese química , DNA Girase/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Enterococcus faecalis/efeitos dos fármacos , Pirróis/farmacologia , Pirróis/química , Pirróis/síntese química , Amidas/farmacologia , Amidas/química , Amidas/síntese química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
4.
Tissue Barriers ; : 2315702, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346163

RESUMO

The development of new therapies is hampered by the lack of predictive, and patient-relevant in vitro models. Organ-on-chip (OOC) technologies can potentially recreate physiological features and hold great promise for tissue and disease modeling. However, the non-standardized design of these chips and perfusion control systems has been a barrier to quantitative high-throughput screening (HTS). Here we present a scalable OOC microfluidic platform for applied kinetic in vitro assays (AKITA) that is applicable for high, medium, and low throughput. Its standard 96-well plate and 384-well plate layouts ensure compatibility with existing laboratory workflows and high-throughput data collection and analysis tools. The AKITA plate is optimized for the modeling of vascularized biological barriers, primarily the blood-brain barrier, skin, and lung, with precise flow control on a custom rocker. The integration of trans-epithelial electrical resistance (TEER) sensors allows rapid and repeated monitoring of barrier integrity over long time periods. Together with automated liquid handling and compound permeability testing analyses, we demonstrate the flexibility of the AKITA platform for establishing human-relevant models for preclinical drug and precision medicine's efficacy, toxicity, and permeability under near-physiological conditions.

5.
Antiviral Res ; 223: 105813, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38272320

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has heavily challenged the global healthcare system. Despite the vaccination programs, the new virus variants are circulating. Further research is required for understanding of the biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and for discovery of therapeutic agents against the virus. Here, we took advantage of drug repurposing to identify if existing drugs could inhibit SARS-CoV-2 infection. We established an open high throughput platform for in vitro screening of drugs against SARS-CoV-2 infection. We screened ∼1000 drugs for their ability to inhibit SARS-CoV-2-induced cell death in the African green monkey kidney cell line (Vero-E6), analyzed how the hit compounds affect the viral N (nucleocapsid) protein expression in human cell lines using high-content microscopic imaging and analysis, determined the hit drug targets in silico, and assessed their ability to cause phospholipidosis, which can interfere with the viral replication. Duvelisib was found by in silico interaction assay as a potential drug targeting virus-host protein interactions. The predicted interaction between PARP1 and S protein, affected by Duvelisib, was further validated by immunoprecipitation. Our results represent a rapidly applicable platform for drug repurposing and evaluation of the new emerging viruses' responses to the drugs. Further in silico studies help us to discover the druggable host pathways involved in the infectious cycle of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Chlorocebus aethiops , Reposicionamento de Medicamentos , Bioensaio , Morte Celular , Proteínas do Nucleocapsídeo
6.
RSC Adv ; 14(5): 2905-2917, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239435

RESUMO

Benzothiazole-based bacterial DNA gyrase and topoisomerase IV inhibitors are promising new antibacterial agents with potent activity against Gram-positive and Gram-negative bacterial strains. The aim of this study was to improve the uptake of these inhibitors into the cytoplasm of Gram-negative bacteria by conjugating them to the small siderophore mimics. The best conjugate 18b displayed potent Escherichia coli DNA gyrase and topoisomerase IV inhibition. The interaction analysis of molecular dynamics simulation trajectory showed the important contribution of the siderophore mimic moiety to binding affinity. By NMR spectroscopy, we demonstrated that the hydroxypyridinone moiety alone was responsible for the chelation of iron(iii). Moreover, 18b showed an enhancement of antibacterial activity against E. coli JW5503 in an iron-depleted medium, clearly indicating an increased uptake of 18b in this bacterial strain.

7.
Chembiochem ; 25(2): e202300638, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37971396

RESUMO

This study aimed to identify inhibitors of the translocated intimin receptor (Tir) of enteropathogenic Escherichia coli (EPEC). EPEC is an intestinal pathogen that causes diarrhea and is a major health concern worldwide. Because Tir is a key virulence factor involved in EPEC pathogenesis, inhibiting its function is a potential strategy for controlling EPEC infections. Virtual screening was applied to chemical libraries to search for compounds that inhibit Tir-mediated bacterial adherence to host cells. Three sites were targeted using the cocrystal structure published earlier. A selection of compounds was then assessed in a cell-based infection model and fluorescence microscopy assay. The results of this study provide a basis for further optimization and testing of Tir inhibitors as potential therapeutic agents for EPEC infections.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Humanos , Escherichia coli Enteropatogênica/metabolismo , Adesinas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Receptores de Superfície Celular/química , Proteínas de Transporte , Infecções por Escherichia coli/microbiologia
8.
iScience ; 26(9): 107523, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636068

RESUMO

The root extract of Peucedanum ostruthium (PO-E) was identified as a promising antibacterial source from a screening of 158 extracts against Staphylococcus aureus. It has also recently been shown to significantly decrease the survival of the nematode Caenorhabditis elegans. We used the biochemometric approach ELINA to investigate the phytochemical characteristics of the multicomponent mixture PO-E to identify the anti-infective constituent(s) targeting S. aureus and C. elegans.1H NMR spectra of PO-E-derived microfractions were correlated with their respective bioactivity data. Heterocovariance analyses unambiguously identified ostruthin as an anti-staphylococcal constituent, which potently also inhibited Enterococcus spp.. ELINA demonstrated that anthelmintic activity was due to a combinatorial effect of ostruthin and isoimperatorin. A C. elegans-based survival and motility assay confirmed that isoimperatorin, imperatorin, and verapamil modulated the susceptibility of ostruthin. The combinatorial effect of these natural products was shown in larvae studies to be related to the function of the nematodes' efflux pump.

9.
J Agric Food Chem ; 71(44): 16554-16567, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37104679

RESUMO

Tree stems contain wood in addition to 10-20% bark, which remains one of the largest underutilized biomasses on earth. Unique macromolecules (like lignin, suberin, pectin, and tannin), extractives, and sclerenchyma fibers form the main part of the bark. Here, we perform detailed investigation of antibacterial and antibiofilm properties of bark-derived fiber bundles and discuss their potential application as wound dressing for treatment of infected chronic wounds. We show that the yarns containing at least 50% of willow bark fiber bundles significantly inhibit biofilm formation by wound-isolated Staphylococcus aureus strains. We then correlate antibacterial effects of the material to its chemical composition. Lignin plays the major role in antibacterial activity against planktonic bacteria [i.e., minimum inhibitory concentration (MIC) 1.25 mg/mL]. Acetone extract (unsaturated fatty acid-enriched) and tannin-like (dicarboxylic acid-enriched) substances inhibit both bacterial planktonic growth [MIC 1 and 3 mg/mL, respectively] and biofilm formation. The yarn lost its antibacterial activity once its surface lignin reached 20.1%, based on X-ray photoelectron spectroscopy. The proportion of fiber bundles at the fabricated yarn correlates positively with its surface lignin. Overall, this study paves the way to the use of bark-derived fiber bundles as a natural-based material for active (antibacterial and antibiofilm) wound dressings, upgrading this underappreciated bark residue from an energy source into high-value pharmaceutical use.


Assuntos
Antibacterianos , Lignina , Lignina/farmacologia , Antibacterianos/química , Pectinas/farmacologia , Taninos/farmacologia , Bandagens , Biofilmes , Testes de Sensibilidade Microbiana
10.
Eur J Med Chem ; 254: 115373, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37084595

RESUMO

A series of quaternary ammonium fluoroquinolones was obtained by exhaustive methylation of the amine groups present at the 7-position of fluoroquinolones, including ciprofloxacin, enoxacin, gatifloxacin, lomefloxacin, and norfloxacin. The synthesized molecules were tested for their antibacterial and antibiofilm activities against Gram-positive and Gram-negative human pathogens, i.e. Staphylococcus aureus and Pseudomonas aeruginosa. The study showed that the synthesized compounds are potent antibacterial agents (MIC values at the lowest 6.25 µM) with low cytotoxicity in vitro as assessed on the BALB 3T3 mouse embryo cell line. Further experiments proved that the tested derivatives are able to bind to the DNA gyrase and topoisomerase IV active sites in a fluoroquinolone-characteristic manner. The most active quaternary ammonium fluoroquinolones, in contrast to ciprofloxacin, reduce the total biomass of P. aeruginosa ATCC 15442 biofilm in post-exposure experiments. The latter effect may be due to the dual mechanism of action of the quaternary fluoroquinolones, which also involves disruption of bacterial cell membranes. IAM-HPLC chromatographic experiments with immobilized artificial membranes (phospholipids) showed that the most active compounds were those with moderate lipophilicity and containing a cyclopropyl group at the N1 nitrogen atom in the fluoroquinolone core.


Assuntos
Compostos de Amônio , Humanos , Animais , Camundongos , Fluoroquinolonas/farmacologia , Fluoroquinolonas/química , Antibacterianos/farmacologia , Antibacterianos/química , Ciprofloxacina , Bactérias , Testes de Sensibilidade Microbiana
11.
J Enzyme Inhib Med Chem ; 38(1): 2155816, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36629427

RESUMO

Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.


Assuntos
Anti-Infecciosos , Ácidos Nucleicos Peptídicos , Bactérias , Antibacterianos/farmacologia , Biofilmes
12.
J Agric Food Chem ; 70(9): 2948-2956, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35200036

RESUMO

Hundreds of different fast-growing Salix hybrids have been developed mainly for energy crops. In this paper, we studied water extracts from the bark of 15 willow hybrids and species as potential antimicrobial additives. Treatment of ground bark in water under mild conditions extracted 12-25% of the dry material. Preparative high-performance liquid chromatography is proven here as a fast and highly efficient tool in the small-scale recovery of raffinose from Salix bark crude extracts for structural elucidation. Less than half of the dissolved material was assigned by chromatographic (gas chromatography and liquid chromatography) and spectroscopic (mass spectrometry and nuclear magnetic resonance spectroscopy) techniques for low-molecular-weight compounds, including mono- and oligosaccharides (sucrose, raffinose, and stachyose) and aromatic phytochemicals (triandrin, catechin, salicin, and picein). The composition of the extracts varied greatly depending on the hybrid or species and the harvesting season. This information generated new scientific knowledge on the variation in the content and composition of the extracts between Salix hybrids and harvesting season depending on the desired molecule. The extracts showed high antibacterial activity on Staphylococcus aureus with a minimal inhibitory concentration (MIC) of 0.6-0.8 mg/mL; however, no inhibition was observed against Escherichia coli, Enterococcus faecalis, and Salmonella typhimurium. MIC of triandrin (i.e., 1.25 mg/mL) is reported for the first time. Although antibacterial triandrin and (+)-catechin were present in extracts, clear correlation between the antibacterial effect and the chemical composition was not established, which indicates that antibacterial activity of the extracts mainly originates from some not yet elucidated substances. Aquatic toxicity and mutagenicity assessments showed the safe usage of Salix water extracts as possible antibacterial additives.


Assuntos
Salix , Antibacterianos/análise , Antibacterianos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Casca de Planta/química , Extratos Vegetais/química , Salix/química , Estações do Ano
13.
Healthcare (Basel) ; 9(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34442162

RESUMO

Parenteral products must be compounded using an aseptic technique to ensure sterility of the medicine. We compared the effect of three clinical environments as compounding areas as well as different aseptic techniques on the sterility of the compounded parenteral product. Clinical pharmacists and pediatric nurses compounded 220 samples in total in three clinical environments: a patient room, a medicine room and biological safety cabinet. The study combined four methods: observation, environmental monitoring (settle plates), monitoring of personnel (finger dab plates) and sterility testing (membrane filtration). Of the compounded samples, 99% were sterile and no significant differences emerged between the clinical environments. Based on the settle plates, the biological safety cabinet was the only area that fulfilled the requirements for eliminating microbial contamination. Most of the steps on the observation form for aseptic techniques were followed. All participants disinfected their hands, wore gloves and disinfected the septum of the vial. Non-contaminated finger dab plates were mostly detected after compounding in the biological safety cabinet. Aseptic techniques were followed relatively well in all environments. However, these results emphasize the importance of good aseptic techniques and support the recommendation of compounding parenteral products in biological safety cabinets in clinical environments.

14.
Mar Drugs ; 19(7)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34356825

RESUMO

Marine-originated spirocyclic bromotyrosines are considered as promising scaffolds for new anticancer drugs. In a continuation of our research to develop potent and more selective anticancer compounds, we synthesized a library of 32 spirocyclic clavatadine analogs by replacing the agmatine, i.e., 4-(aminobutyl)guanidine, side chain with different substituents. These compounds were tested for cytotoxicity against skin cancer using the human melanoma cell line (A-375) and normal human skin fibroblast cell line (Hs27). The highest cytotoxicity against the A-375 cell line was observed for dichloro compound 18 (CC50 0.4 ± 0.3 µM, selectivity index (SI) 2). The variation of selectivity ranged from SI 0.4 to reach 2.4 for the pyridin-2-yl derivative 29 and hydrazide analog of 2-picoline 37. The structure-activity relationships of the compounds in respect to cytotoxicity and selectivity toward cancer cell lines are discussed.


Assuntos
Antineoplásicos/farmacologia , Organismos Aquáticos , Guanidinas/farmacologia , Tirosina/análogos & derivados , Animais , Antineoplásicos/química , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Guanidinas/química , Humanos , Tirosina/química , Tirosina/farmacologia
15.
J Microbiol Methods ; 184: 106201, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33713725

RESUMO

Enteropathogenic E. coli (EPEC) causes intestinal infections leading to severe diarrhea. EPEC attaches to the host cell causing lesions to the intestinal epithelium coupled with the effacement of microvilli. In the process, actin accumulates into a pedestal-like structure under bacterial microcolonies. We designed an automated fluorescence microscopy-based screening method for discovering compounds capable of inhibiting EPEC adhesion and virulence using aurodox, a type three secretion system (T3SS) inhibitor, as a positive control. The screening assay employs an EPEC strain (2348/69) expressing a fluorescent protein and actin staining for monitoring the bacteria and their pedestals respectively, analyzing these with a custom image analysis pipeline. The assay allows for the discovery of compounds capable of preventing the formation of pathogenic actin rearrangements. These compounds may be interfering with virulence-related molecular pathways relevant for developing antivirulence leads.


Assuntos
Antibacterianos/farmacologia , Automação/métodos , Aderência Bacteriana/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Escherichia coli Enteropatogênica/efeitos dos fármacos , Escherichia coli Enteropatogênica/fisiologia , Microscopia de Fluorescência/métodos , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Humanos , Sistemas de Secreção Tipo III/antagonistas & inibidores , Sistemas de Secreção Tipo III/metabolismo , Virulência/efeitos dos fármacos
16.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672408

RESUMO

Many bacteria and actinomycetales use L-cysteine biosynthesis to increase their tolerance to antibacterial treatment and establish a long-lasting infection. In turn, this might lead to the onset of antimicrobial resistance that currently represents one of the most menacing threats to public health worldwide. The biosynthetic machinery required to synthesise L-cysteine is absent in mammals; therefore, its exploitation as a drug target is particularly promising. In this article, we report a series of inhibitors of Salmonella thyphimurium serine acetyltransferase (SAT), the enzyme that catalyzes the rate-limiting step of L-cysteine biosynthesis. The development of such inhibitors started with the virtual screening of an in-house library of compounds that led to the selection of seven structurally unrelated hit derivatives. A set of molecules structurally related to hit compound 5, coming either from the original library or from medicinal chemistry efforts, were tested to determine a preliminary structure-activity relationship and, especially, to improve the inhibitory potency of the derivatives, that was indeed ameliorated by several folds compared to hit compound 5 Despite these progresses, at this stage, the most promising compound failed to interfere with bacterial growth when tested on a Gram-negative model organism, anticipating the need for further research efforts.

17.
Eur J Med Chem ; 213: 113200, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33524686

RESUMO

The rise in multidrug-resistant bacteria defines the need for identification of new antibacterial agents that are less prone to resistance acquisition. Compounds that simultaneously inhibit multiple bacterial targets are more likely to suppress the evolution of target-based resistance than monotargeting compounds. The structurally similar ATP binding sites of DNA gyrase and topoisomerase Ⅳ offer an opportunity to accomplish this goal. Here we present the design and structure-activity relationship analysis of balanced, low nanomolar inhibitors of bacterial DNA gyrase and topoisomerase IV that show potent antibacterial activities against the ESKAPE pathogens. For inhibitor 31c, a crystal structure in complex with Staphylococcus aureus DNA gyrase B was obtained that confirms the mode of action of these compounds. The best inhibitor, 31h, does not show any in vitro cytotoxicity and has excellent potency against Gram-positive (MICs: range, 0.0078-0.0625 µg/mL) and Gram-negative pathogens (MICs: range, 1-2 µg/mL). Furthermore, 31h inhibits GyrB mutants that can develop resistance to other drugs. Based on these data, we expect that structural derivatives of 31h will represent a step toward clinically efficacious multitargeting antimicrobials that are not impacted by existing antimicrobial resistance.


Assuntos
Trifosfato de Adenosina/farmacologia , Antibacterianos/farmacologia , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Trifosfato de Adenosina/síntese química , Trifosfato de Adenosina/química , Antibacterianos/síntese química , Antibacterianos/química , Cristalografia por Raios X , DNA Topoisomerase IV/metabolismo , Relação Dose-Resposta a Droga , Escherichia coli/enzimologia , Escherichia coli/patogenicidade , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Staphylococcus aureus/enzimologia , Staphylococcus aureus/patogenicidade , Relação Estrutura-Atividade
18.
Eur J Med Chem ; 211: 113002, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33223262

RESUMO

N-aryl-oxazolidinones is a prominent family of antimicrobials used for treating infections caused by clinically prevalent Gram-positive bacteria. Recently, boron-containing compounds have displayed intriguing potential in the antibiotic discovery setting. Herein, we report the unprecedented introduction of a boron-containing moiety such as an aryl boronic acid in the external region of the oxazolidinone structure via a chemoselective acyl coupling reaction. As a result, we accessed a series of analogues with a distal aryl boronic pharmacophore on the oxazolidinone scaffold. We identified that a peripheric linear conformation coupled with freedom of rotation and no further substitution on the external aryl boronic ring, an amido linkage with hydrogen bonding character, in addition to a para-relative disposition between boronic group and linker, are the optimal combination of structural features in this series for antimicrobial activity. In comparison to linezolid, the analogue comprising all those features, compound 20b, displayed levels of antimicrobial activity augmented by an eight-fold to a thirty-two-fold against a panel of Gram-positive strains, and a near one hundred-fold against Escherichia coli JW5503, a Gram-negative mutant strain with a defective efflux capability.


Assuntos
Antibacterianos/farmacologia , Ácidos Borônicos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Oxazolidinonas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Ácidos Borônicos/síntese química , Ácidos Borônicos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxazolidinonas/síntese química , Oxazolidinonas/química , Relação Estrutura-Atividade
19.
ACS Med Chem Lett ; 11(12): 2433-2440, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33329764

RESUMO

We designed and synthesized a series of inhibitors of the bacterial enzymes DNA gyrase and DNA topoisomerase IV, based on our recently published benzothiazole-based inhibitor bearing an oxalyl moiety. To improve the antibacterial activity and retain potent enzymatic activity, we systematically explored the chemical space. Several strategies of modification were followed: varying substituents on the pyrrole carboxamide moiety, alteration of the central scaffold, including variation of substitution position and, most importantly, modification of the oxalyl moiety. Compounds with acidic, basic, and neutral properties were synthesized. To understand the mechanism of action and binding mode, we have obtained a crystal structure of compound 16a, bearing a primary amino group, in complex with the N-terminal domain of E. coli gyrase B (24 kDa) (PDB: 6YD9). Compound 15a, with a low molecular weight of 383 Da, potent inhibitory activity on E. coli gyrase (IC50 = 9.5 nM), potent antibacterial activity on E. faecalis (MIC = 3.13 µM), and efflux impaired E. coli strain (MIC = 0.78 µM), is an important contribution for the development of novel gyrase and topoisomerase IV inhibitors in Gram-negative bacteria.

20.
Planta Med ; 86(15): 1089-1096, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32365392

RESUMO

Mint flavorings are widely used in confections, beverages, and dairy products. For the first time, mint flavoring composition of mint candies and food supplements (n = 45), originating from 16 countries, as well as their antibacterial properties, was analyzed. The flavorings were isolated by Marcusson's type micro-apparatus and analyzed by GC-MS. The total content of the mint flavoring hydrodistilled extracts was in the range of 0.01 - 0.9%. The most abundant compounds identified in the extracts were limonene, 1,8-cineole, menthone, menthofuran, isomenthone, menthol and its isomers, menthyl acetate. The antimicrobial activity of 13 reference substances and 10 selected mint flavoring hydrodistilled extracts was tested on Escherichia coli and Staphylococcus aureus by broth dilution method. Linalool acetate and (-)-carvone, as most active against both bacteria, had the lowest MIC90 values. (+)-Menthyl acetate, (-)-menthyl acetate, and limonene showed no antimicrobial activity. Three of the tested extracts had antimicrobial activity against E. coli and 8 extracts against S. aureus. Their summary antimicrobial activity was not always in concordance with the activities of respective reference substances.


Assuntos
Mentha , Antibacterianos/farmacologia , Doces , Suplementos Nutricionais , Escherichia coli , Testes de Sensibilidade Microbiana , Extratos Vegetais , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA