Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 14(10): 7774-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25942864

RESUMO

The effect of peak firing temperature and grid width on the contact properties between Ag metal and silicon (n+ emitter) was investigated for screen-printed silicon solar cells. We confirmed the factors that control the specific contact resistance as follows: (1) the Ag coverage fraction on the silicon surface, d(2) the thickness of the glass layer and (3) the etching depth on the n+ emitter region. The lowest specific contact resistance (8.27 mΩ x cm2) was obtained at the optimum firing temperature (720 degrees C). We also found that the grid width affected the contact quality of Ag paste because the contact width related to the absorbed heat of samples in RTP system. For this reason, when the grid width was further reduced, meaning more heat absorption, more Ag crystallites grew and the glass layer thickened. Light I-V results of a 6-inch silicon solar cell with minimum busbar width were similar to the PC1D simulation results. The efficiency was improved by 0.2% with the reduction of the busbar width.

2.
Opt Express ; 21 Suppl 1: A157-66, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23389267

RESUMO

The performance enhancement of polycrystalline Si solar cells by using an optimized discrete multilayer anti-reflection (AR) coating with broadband and omni-directional characteristics is presented. Discrete multilayer AR coatings are optimized by a genetic algorithm, and experimentally demonstrated by refractive-index tunable SiO2 nano-helix arrays and co-sputtered (SiO2)x(TiO2)1₋x thin film layers. The optimized multilayer AR coating shows a reduced total reflection, leading to the high incident-photon-to-electron conversion efficiency over a correspondingly wide range of wavelengths and incident angles, offering a very promising way to harvest more solar energy by virtually any type of solar cells for a longer time of a day.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , Refratometria/instrumentação , Espalhamento de Radiação , Dióxido de Silício/química , Energia Solar , Luz Solar , Teste de Materiais , Óptica e Fotônica , Propriedades de Superfície
3.
J Nanosci Nanotechnol ; 12(4): 3224-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22849093

RESUMO

Optimizing the design of the surface texture is an essential aspect of Si solar cell technology as it can maximize the light trapping efficiency of the cells. The proper simulation tools can provide efficient means of designing and analyzing the effects of the texture patterns on light confinement in an active medium. In this work, a newly devised algorithm termed Slab-Outline, based on a ray tracing technique, is reported. The details of the intersection searching logic adopted in Slab-Outline algorithm are also discussed. The efficiency of the logic was tested by comparing the computing time between the current algorithm and the Constructive Solid Geometry algorithm, and its superiority in computing speed was proved. The validity of the new algorithm was verified by comparing the simulated reflectance spectra with the measured spectra from a textured Si surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA