Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 37(2): 143-154, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38381127

RESUMO

Plant disease resistance (R) gene-mediated effector-triggered immunity (ETI) is usually associated with hypersensitive response (HR) and provides robust and race-specific disease resistance against pathogenic infection. The activation of ETI and HR in plants is strictly regulated, and improper activation will lead to cell death. Xa27 is an executor-type R gene in rice induced by the TAL effector AvrXa27 and confers disease resistance to Xanthomonas oryzae pv. oryzae (Xoo). Here we reported the characterization of a transgenic line with lesion mimic phenotype, designated as Spotted leaf and resistance 1 (Slr1), which was derived from rice transformation with a genomic subclone located 5,125 bp downstream of the Xa27 gene. Slr1 develops spontaneous lesions on its leaves caused by cell death and confers disease resistance to both Xoo and Xanthomonas oryzae pv. oryzicola. Further investigation revealed that the Slr1 phenotype resulted from the ectopic expression of an Xa27 paralog gene, designated as Xa27B, in the inserted DNA fragment at the Slr1 locus driven by a truncated CaMV35Sx2 promoter in reverse orientation. Disease evaluation of IRBB27, IR24, and Xa27B mutants with Xoo strains expressing dTALE-Xa27B confirmed that Xa27B is a functional executor-type R gene. The functional XA27B-GFP protein was localized to the endoplasmic reticulum and apoplast. The identification of Xa27B as a new functional executor-type R gene provides additional genetic resources for studying the mechanism of executor-type R protein-mediated ETI and developing enhanced and broad-spectrum disease resistance to Xoo through promoter engineering. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Oryza , Xanthomonas , Resistência à Doença/genética , Oryza/genética , Expressão Ectópica do Gene , Genes vpr , Xanthomonas/genética , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas
2.
J Exp Bot ; 75(7): 2143-2155, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38085003

RESUMO

Rice is prone to take up the toxic elements arsenic (As) and cadmium (Cd) from paddy soil through the transporters for other essential elements. Disruption of these essential transporters usually adversely affects the normal growth of rice and the homeostasis of essential elements. Here we report on developing low-As and low-Cd rice grain through the co-overexpression of OsPCS1, OsABCC1, and OsHMA3 genes under the control of the rice OsActin1 promoter. Co-overexpression of OsPCS1 and OsABCC1 synergistically decreased As concentration in the grain. Overexpression of OsPCS1 also decreased Cd concentration in the grain by restricting the xylem-to-phloem Cd transport in node I, but paradoxically caused Cd hypersensitivity as the overproduced phytochelatins in OsPCS1-overexpressing plants suppressed OsHMA3-dependent Cd sequestration in vacuoles and promoted Cd transport from root to shoot. Co-overexpression of OsHAM3 and OsPCS1 overcame this suppression and complemented the Cd hypersensitivity. Compared with non-transgenic rice control, co-overexpression of OsABCC1, OsPCS1, and OsHMA3 in rice decreased As and Cd concentrations in grain by 92.1% and 98%, respectively, without causing any defect in plant growth and reproduction or of mineral nutrients in grain. Our research provides an effective approach and useful genetic materials for developing low-As and low-Cd rice grain.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Cádmio/metabolismo , Arsênio/metabolismo , Oryza/genética , Grão Comestível/genética , Proteínas de Membrana Transportadoras/genética , Engenharia Genética , Solo
3.
Transgenic Res ; 31(1): 119-130, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748132

RESUMO

The hypersensitive response (HR) is a form of programmed cell death of plant cells occurring in the local region surrounding pathogen infection site to prevent the spread of infection by pathogens. Bax, a mammalian pro-apoptotic member of Bcl-2 family, triggers HR-like cell death when expressed in plants. However, constitutive expression of the Bax gene negatively affects plant growth and development. The Xa10 gene in rice (Oryza sativa) is an executor resistance (R) gene that confers race-specific disease resistance to Xanthomonas oryzae pv. oryzae strains harboring TAL effector gene AvrXa10. In this study, the Xa10 promoter was used to regulate heterologous expression of the Bax gene from mouse (Mus musculus) in Nicotiana benthamiana and rice. Cell death was induced in N. benthamiana after co-infiltration with the PXa10:Bax:TXa10 gene and the PPR1:AvrXa10:TNos gene. Transgenic rice plants carrying the PXa10:Bax:TXa10 gene conferred specific disease resistance to Xa10-incompatible X. oryzae pv. oryzae strain PXO99A(pHM1AvrXa10), but not to the Xa10-compatible strain PXO99A(pHM1). The resistance specificity was confirmed by the AvrXa10-dependent induction of the PXa10:Bax:TXa10 gene in transgenic rice. Our results demonstrated that the inducible expression of the Bax gene in transgenic rice was achieved through the control of the executor R gene promoter and the heterologous expression of the pro-apoptosis regulator gene in rice conferred disease resistance to X. oryzae pv. oryzae.


Assuntos
Oryza , Xanthomonas , Animais , Proteínas de Bactérias/genética , Resistência à Doença/genética , Expressão Gênica , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Oryza/genética , Oryza/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Xanthomonas/genética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
4.
Plant Biotechnol (Tokyo) ; 37(1): 69-75, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32362750

RESUMO

Retrotransposons are mobile genetic elements capable of transposition via reverse transcription of RNA intermediates. Rice cultivar Nipponbare contains two nearly identical genomic copies of Tos17, an endogenous copia-like LTR retrotransposon, on chromosomes 7 (Tos17 Chr.7) and 10 (Tos17 Chr.10), respectively. Previous studies demonstrated that only Tos17 Chr.7 is active in transposition during tissue culture. Tos17 Chr.7 has been extensively used for insertional mutagenesis as a tool for functional analysis of rice genes. However, Tos17 Chr.7 transposition might generate somaclonal mutagenesis with undesirable traits during rice transformation, which would affect the evaluation or application of transgenes. In this study, we generated a Tos17 Chr.7 knockout mutant D873 by using CRISPR/Cas9 gene editing system. The gene-edited allele of Tos17 Chr.7 in D873, designated as Tos17 D873, has an 873-bp DNA deletion in the pol gene of Tos17 Chr.7, which caused the deletion of the GAG-pre-integrase domain and the integrase core domain. Although the transcription of Tos17 D873 was activated in D873 calli, no transposition of Tos17 D873 was detected in the regenerated D873 plants. The results demonstrate that the GAG-pre-integrase domain and the integrase core domain are essential for Tos17 Chr.7 transposition and the deletion of the two domains could be not complemented by other LTR retrotransposons in rice genome. As the Tos17 Chr.7-derived somaclonal mutagenesis is blocked in the D873 plants, the generation of the Tos17 D873 allele will be helpful in production of transgenic rice plants for gene function study and genetic engineering. Similar approach can be used to inactivate other retrotransposons in crop breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA