Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 452: 131338, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37027912

RESUMO

Microscopic fuel fragments, so-called "hot particles", were released during the 1986 accident at the Chornobyl nuclear powerplant and continue to contaminate the exclusion zone in northern Ukraine. Isotopic analysis can provide vital information about sample origin, history and contamination of the environment, though it has been underutilized due to the destructive nature of most mass spectrometric techniques, and inability to remove isobaric interference. Recent developments have diversified the range of elements that can be investigated through resonance ionization mass spectrometry (RIMS), notably in the fission products. The purpose of this study is to demonstrate the application of multi-element analysis on hot particles as relates to their burnup, particle formation in the accident, and weathering. The particles were analysed with two RIMS instruments: resonant-laser secondary neutral mass spectrometry (rL-SNMS) at the Institute for Radiation Protection and Radioecology (IRS) in Hannover, Germany, and laser ionization of neutrals (LION) at Lawrence Livermore National Laboratory (LLNL) in Livermore, USA. Comparable results across instruments show a range of burnup dependent isotope ratios for U and Pu and Cs, characteristic of RBMK-type reactors. Results for Rb, Ba and Sr show the influence of the environment, retention of Cs in the particles and time passed since fuel discharge.

2.
Anal Chem ; 93(10): 4472-4478, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33667067

RESUMO

The use of cosmogenically produced sulfur-35 (T1/2 = 87 days) and sodium-22 (T1/2 = 2.6 years) as intrinsic tracers can provide valuable information on catchment hydrology, flow paths, and subsurface storage. A new and straightforward method was created to determine the activities of both 35S and 22Na in various water sources by pumping large volumes (up to 1000 L) of water through cation- and anion-exchange resin columns in the field to collect sodium and sulfate ions and simple chemistry in the lab. Samples are counted for 35S using liquid scintillation counting (LSC) and for 22Na via γ spectroscopy. Our novel in situ method provides faster sample throughput as well as better counting statistics and lower detection limits. Both methods were successfully applied at the Southern Sierra Critical Zone Observatory.

3.
Nature ; 565(7739): 328-330, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30617314

RESUMO

The probability that a nucleus will absorb a neutron-the neutron capture cross-section-is important to many areas of nuclear science, including stellar nucleosynthesis, reactor performance, nuclear medicine and defence applications. Although neutron capture cross-sections have been measured for most stable nuclei, fewer results exist for radioactive isotopes, and statistical-model predictions typically have large uncertainties1. There are almost no nuclear data for neutron-induced reactions of the radioactive nucleus 88Zr, despite its importance as a diagnostic for nuclear security. Here, by exposing 88Zr to the intense neutron flux of a nuclear reactor, we determine that 88Zr has a thermal neutron capture cross-section of 861,000 ± 69,000 barns (1σ uncertainty), which is five orders of magnitude larger than the theoretically predicted value of 10 barns2. This is the second-largest thermal neutron capture cross-section ever measured and no other cross-section of comparable size has been discovered in the past 70 years. The only other nuclei known to have values greater than 105 barns3-6 are 135Xe (2.6 × 106 barns), a fission product that was first discovered as a poison in early reactors7,8, and 157Gd (2.5 × 105 barns), which is used as a detector material9,10, a burnable reactor poison11 and a potential medical neutron capture therapy agent12. In the case of 88Zr neutron capture, both the target and the product (89Zr) nuclei are radioactive and emit intense γ-rays upon decay, allowing sensitive detection of miniscule quantities of these radionuclides. This result suggests that as additional measurements with radioactive isotopes become feasible with the operation of new nuclear-science facilities, further surprises may be uncovered, with far-reaching implications for our understanding of neutron capture reactions.

4.
Appl Radiat Isot ; 126: 130-133, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28314507

RESUMO

The Black Hills State University Underground Campus (BHUC) houses a low background counting facility on the 4850' level of the Sanford Underground Research Facility. There are currently four ultra-low background, high-purity germanium detectors installed in the BHUC and it is anticipated four more detectors will be installed within a year. In total, the BHUC will be able to accommodate up to twelve detectors with space inside a class 1000 cleanroom, an automated liquid nitrogen fill system, on-site personnel assistance and other required utilities.


Assuntos
Radiação de Fundo , Universidades , Fenômenos Astronômicos , Partículas Elementares , Ambiente Controlado , Arquitetura de Instituições de Saúde , Fenômenos Geológicos , Laboratórios , Mineração , Radiometria/instrumentação , Radiometria/métodos , South Dakota
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA