Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(3): 254, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38342848

RESUMO

Changes in glacier area, glacial lakes, debris cover, and geomorphological features such as debris fans have a significant impact on glacial dynamics. Therefore, precise and timely observation and tracking of glacier surface changes is a necessity. The availability of high spatial resolution remote sensing images has made it viable to analyse the glacier surface changes at a local level. However, with an increase in spatial resolution, the spectral variability increases, giving rise to additional challenges (such as false changes and misregistration) in the change detection process. These challenges can preferably be dealt with using an object-based change detection (OBCD) approach rather than the conventional pixel-based change detection approach. Therefore, this study has proposed an OBCD methodology using high-spatial-resolution remote sensing images to detect changes in glacier features. Variability in glacier features has been further analysed by associating it with important climate variables, that is, air temperature and precipitation. As a case study, the changes in Gangotri Glacier (Uttarakhand Himalayas in India) features have been studied using high-spatial-resolution WorldView-2 and Linear Imaging Self-Scanning System (LISS)-4 images for a 3-year period 2011-2014. The spectral correspondences between glacier surface and non-glacier surface have been handled by considering brightness temperature and slope as ancillary data to improvise their distinction. A change detection accuracy of ~ 84% has been obtained using the OBCD approach. Results further show that the variations in glacier features are in congruence with the climatic observations.


Assuntos
Monitoramento Ambiental , Camada de Gelo , Temperatura , Lagos , Índia , Mudança Climática
2.
Environ Monit Assess ; 195(11): 1298, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828129

RESUMO

The surface subsidence in the Krishna Godavari (KG) basin in India has increased with the discovery of crude oil and natural gas reserves since 1983. With private players coming up to bag the exploration and refining contracts, there must be timely monitoring of the surface subsidence of the region so that remedial measures for the resettlement of the populations can be taken promptly. Regular monitoring is necessary since the region is fertile and any seawater ingress results in the loss of valuable cultivable land. Multi-temporal SAR Interferometry (MTInSAR) technique has been applied successfully all over the world for the study and regular monitoring of land surface subsidence scenarios. This study utilizes data from Sentinel-1 C-band SAR sensor for MTInSAR-based surface subsidence and RADAR Vegetation Index (RVI)-based vegetation loss for the same season estimation between 2017 and 2022 for the KG basin region. It is inferred from the study that the region has shown surface subsidence of 80 mm/year between April 2020 and June 2022. This study uses support vector regressor (SVR) to predict the loss in forest cover in terms of RVI using MTInSAR-based surface subsidence, VH, and VV backscatter as parameters. It is observed that the SVR gave R2-statistics of 0.89 and 0.873 in the training and testing phases with a mean absolute error (MAE) and root mean squared error (RMSE) of 0.08 and 0.02, respectively. It is also observed that the region showed a loss of 3.21 km2 of cultivable land between 2020 and 2022.


Assuntos
Monitoramento Ambiental , Florestas , Monitoramento Ambiental/métodos , Índia , Gás Natural , Interferometria
3.
Environ Monit Assess ; 193(3): 110, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33537901

RESUMO

Floods are one of the most disastrous and dangerous catastrophes faced by humanity for ages. Though mostly deemed a natural phenomenon, floods can be anthropogenic and can be equally devastating in modern times. Remote sensing with its non-evasive data availability and high temporal resolution stands unparalleled for flood mapping and modelling. Since floods in India occur mainly in monsoon months, optical remote sensing has limited applications in proper flood mapping owing to lesser number of cloud-free days. Remotely sensed microwave/synthetic aperture radar (SAR) data has penetration ability and has high temporal data availability, making it both weather independent and highly versatile for the study of floods. This study uses space-borne SAR data in C-band with VV (vertically emitted and vertically received) and VH (vertically emitted and horizontally received) polarization channels from Sentinel-1A satellite for SAR interferometry-based flood mapping and runoff modeling for Rupnagar (Punjab) floods of 2019. The flood maps were prepared using coherence-based thresholding, and digital elevation map (DEM) was prepared by correlating the unwrapped phase to elevation. The DEM was further used for Soil Conservation Service-curve number (SCS-CN)-based runoff modelling. The maximum runoff on 18 August 2019 was 350 mm while the average daily rainfall was 120 mm. The estimated runoff significantly correlated with the rainfall with an R2 statistics value of 0.93 for 18 August 2019. On 18 August 2019, Rupnagar saw the most devastating floods and waterlogging that submerged acres of land and displaced thousands of people.


Assuntos
Inundações , Radar , Monitoramento Ambiental , Humanos , Índia , Tecnologia de Sensoriamento Remoto , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA