Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 18(9): e1010375, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121899

RESUMO

In plants, regulated cell expansion determines organ size and shape. Several members of the family of redundantly acting Small Auxin Up RNA (SAUR) proteins can stimulate plasma membrane (PM) H+-ATPase proton pumping activity by inhibiting PM-associated PP2C.D phosphatases, thereby increasing the PM electrochemical potential, acidifying the apoplast, and stimulating cell expansion. Similarly, Arabidopsis thaliana SAUR63 was able to increase growth of various organs, antagonize PP2C.D5 phosphatase, and increase H+-ATPase activity. Using a gain-of-function approach to bypass genetic redundancy, we dissected structural requirements for SAUR63 growth-promoting activity. The divergent N-terminal domain of SAUR63 has a predicted basic amphipathic α-helix and was able to drive partial PM association. Deletion of the N-terminal domain decreased PM association of a SAUR63 fusion protein, as well as decreasing protein level and eliminating growth-promoting activity. Conversely, forced PM association restored ability to promote H+-ATPase activity and cell expansion, indicating that SAUR63 is active when PM-associated. Lipid binding assays and perturbations of PM lipid composition indicate that the N-terminal domain can interact with PM anionic lipids. Mutations in the conserved SAUR domain also reduced PM association in root cells. Thus, both the N-terminal domain and the SAUR domain may cooperatively mediate the SAUR63 PM association required to promote growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Lipídeos , Monoéster Fosfórico Hidrolases/genética , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Prótons , RNA/metabolismo
2.
Plant Physiol ; 185(1): 256-273, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33631805

RESUMO

Activation of plasma membrane (PM) H+-ATPase activity is crucial in guard cells to promote light-stimulated stomatal opening, and in growing organs to promote cell expansion. In growing organs, SMALL AUXIN UP RNA (SAUR) proteins inhibit the PP2C.D2, PP2C.D5, and PP2C.D6 (PP2C.D2/5/6) phosphatases, thereby preventing dephosphorylation of the penultimate phosphothreonine of PM H+-ATPases and trapping them in the activated state to promote cell expansion. To elucidate whether SAUR-PP2C.D regulatory modules also affect reversible cell expansion, we examined stomatal apertures and conductances of Arabidopsis thaliana plants with altered SAUR or PP2C.D activity. Here, we report that the pp2c.d2/5/6 triple knockout mutant plants and plant lines overexpressing SAUR fusion proteins exhibit enhanced stomatal apertures and conductances. Reciprocally, saur56 saur60 double mutants, lacking two SAUR genes normally expressed in guard cells, displayed reduced apertures and conductances, as did plants overexpressing PP2C.D5. Although altered PM H+-ATPase activity contributes to these stomatal phenotypes, voltage clamp analysis showed significant changes also in K+ channel gating in lines with altered SAUR and PP2C.D function. Together, our findings demonstrate that SAUR and PP2C.D proteins act antagonistically to facilitate stomatal movements through a concerted targeting of both ATP-dependent H+ pumping and channel-mediated K+ transport.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Estômatos de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Ecótipo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Reguladores de Crescimento de Plantas/metabolismo
3.
Development ; 146(14)2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31262724

RESUMO

In flowering plants, anther dehiscence and pollen release are essential for sexual reproduction. Anthers dehisce after cell wall degradation weakens stomium cell junctions in each anther locule, and desiccation creates mechanical forces that open the locules. Either effect or both together may break stomium cell junctions. The microRNA miR167 negatively regulates ARF6 and ARF8, which encode auxin response transcription factors. Arabidopsis mARF6 or mARF8 plants with mutated miR167 target sites have defective anther dehiscence and ovule development. Null mir167a mutations recapitulated mARF6 and mARF8 anther and ovule phenotypes, indicating that MIR167a is the main miR167 precursor gene that delimits ARF6 and ARF8 expression in these organs. Anthers of mir167a or mARF6/8 plants overexpressed genes encoding cell wall loosening functions associated with cell expansion, and grew larger than wild-type anthers did starting at flower stage 11. Experimental desiccation enabled dehiscence of miR167-deficient anthers, indicating competence to dehisce. Conversely, high humidity conditions delayed anther dehiscence in wild-type flowers. These results support a model in which miR167-mediated anther growth arrest permits anther dehiscence. Without miR167 regulation, excess anther growth delays dehiscence by prolonging desiccation.


Assuntos
Flores/crescimento & desenvolvimento , Flores/genética , MicroRNAs/fisiologia , Óvulo Vegetal/crescimento & desenvolvimento , Agrobacterium tumefaciens , Arabidopsis , Sobrevivência Celular/genética , Parede Celular/metabolismo , Desidratação/genética , Desidratação/metabolismo , Regulação da Expressão Gênica de Plantas , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Fenótipo , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA