Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
medRxiv ; 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39314935

RESUMO

Aims/hypothesis: The plasma proteome holds promise as a diagnostic and prognostic tool that can accurately reflect complex human traits and disease processes. We assessed the ability of plasma proteins to predict type 2 diabetes mellitus (T2DM) and related traits. Methods: Clinical, genetic, and high-throughput proteomic data from three subcohorts of UK Biobank participants were analyzed for association with dual-energy x-ray absorptiometry (DXA) derived truncal fat (in the adiposity subcohort), estimated maximum oxygen consumption (VO 2 max) (in the fitness subcohort), and incident T2DM (in the T2DM subcohort). We used least absolute shrinkage and selection operator (LASSO) regression to assess the relative ability of non-proteomic and proteomic variables to associate with each trait by comparing variance explained (R 2 ) and area under the curve (AUC) statistics between data types. Stability selection with randomized LASSO regression identified the most robustly associated proteins for each trait. The benefit of proteomic signatures (PSs) over QDiabetes, a T2DM clinical risk score, was evaluated through the derivation of delta (Δ) AUC values. We also assessed the incremental gain in model performance metrics using proteomic datasets with varying numbers of proteins. A series of two-sample Mendelian randomization (MR) analyses were conducted to identify potentially causal proteins for adiposity, fitness, and T2DM. Results: Across all three subcohorts, the mean age was 56.7 years and 54.9% were female. In the T2DM subcohort, 5.8% developed incident T2DM over a median follow-up of 7.6 years. LASSO-derived PSs increased the R 2 of truncal fat and VO 2 max over clinical and genetic factors by 0.074 and 0.057, respectively. We observed a similar improvement in T2DM prediction over the QDiabetes score [Δ AUC: 0.016 (95% CI 0.008, 0.024)] when using a robust PS derived strictly from the T2DM outcome versus a model further augmented with non-overlapping proteins associated with adiposity and fitness. A small number of proteins (29 for truncal adiposity, 18 for VO2max, and 26 for T2DM) identified by stability selection algorithms offered most of the improvement in prediction of each outcome. Filtered and clustered versions of the full proteomic dataset supplied by the UK Biobank (ranging between 600-1,500 proteins) performed comparably to the full dataset for T2DM prediction. Using MR, we identified 4 proteins as potentially causal for adiposity, 1 as potentially causal for fitness, and 4 as potentially causal for T2DM. Conclusions/Interpretation: Plasma PSs modestly improve the prediction of incident T2DM over that possible with clinical and genetic factors. Further studies are warranted to better elucidate the clinical utility of these signatures in predicting the risk of T2DM over the standard practice of using the QDiabetes score. Candidate causally associated proteins identified through MR deserve further study as potential novel therapeutic targets for T2DM.

2.
medRxiv ; 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39314942

RESUMO

Background: While risk stratification for atherosclerotic cardiovascular disease (ASCVD) is essential for primary prevention, current clinical risk algorithms demonstrate variability and leave room for further improvement. The plasma proteome holds promise as a future diagnostic and prognostic tool that can accurately reflect complex human traits and disease processes. We assessed the ability of plasma proteins to predict ASCVD. Method: Clinical, genetic, and high-throughput plasma proteomic data were analyzed for association with ASCVD in a cohort of 41,650 UK Biobank participants. Selected features for analysis included clinical variables such as a UK-based cardiovascular clinical risk score (QRISK3) and lipid levels, 36 polygenic risk scores (PRSs), and Olink protein expression data of 2,920 proteins. We used least absolute shrinkage and selection operator (LASSO) regression to select features and compared area under the curve (AUC) statistics between data types. Randomized LASSO regression with a stability selection algorithm identified a smaller set of more robustly associated proteins. The benefit of plasma proteins over standard clinical variables, the QRISK3 score, and PRSs was evaluated through the derivation of Δ AUC values. We also assessed the incremental gain in model performance using proteomic datasets with varying numbers of proteins. To identify potential causal proteins for ASCVD, we conducted a two-sample Mendelian randomization (MR) analysis. Result: The mean age of our cohort was 56.0 years, 60.3% were female, and 9.8% developed incident ASCVD over a median follow-up of 6.9 years. A protein-only LASSO model selected 294 proteins and returned an AUC of 0.723 (95% CI 0.708-0.737). A clinical variable and PRS-only LASSO model selected 4 clinical variables and 20 PRSs and achieved an AUC of 0.726 (95% CI 0.712-0.741). The addition of the full proteomic dataset to clinical variables and PRSs resulted in a Δ AUC of 0.010 (95% CI 0.003-0.018). Fifteen proteins selected by a stability selection algorithm offered improvement in ASCVD prediction over the QRISK3 risk score [Δ AUC: 0.013 (95% CI 0.005-0.021)]. Filtered and clustered versions of the full proteomic dataset (consisting of 600-1,500 proteins) performed comparably to the full dataset for ASCVD prediction. Using MR, we identified 11 proteins as potentially causal for ASCVD. Conclusion: A plasma proteomic signature performs well for incident ASCVD prediction but only modestly improves prediction over clinical and genetic factors. Further studies are warranted to better elucidate the clinical utility of this signature in predicting the risk of ASCVD over the standard practice of using the QRISK3 score.

3.
Radiol Cardiothorac Imaging ; 6(4): e230344, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39145733

RESUMO

Purpose To investigate if aortic stiffening as detected with cardiac MRI is an early phenomenon in the development and progression of heart failure with preserved ejection fraction (HFpEF). Materials and Methods Both clinical and preclinical studies were performed. The clinical study was a secondary analysis of the prospective HFpEF stress trial (August 2017 through September 2019) and included 48 participants (median age, 69 years [range, 65-73 years]; 33 female, 15 male) with noncardiac dyspnea (NCD, n = 21), overt HFpEF at rest (pulmonary capillary wedge pressure [PCWP] ≥ 15 mm Hg, n = 14), and masked HFpEF at rest diagnosed during exercise stress (PCWP ≥ 25 mm Hg, n = 13) according to right heart catheterization. Additionally, all participants underwent echocardiography and cardiac MRI at rest and during exercise stress. Aortic pulse wave velocity (PWV) was calculated. The mechanistic preclinical study characterized cardiac function and structure in transgenic mice with induced arterial stiffness (Runx2-smTg mice). Statistical analyses comprised nonparametric and parametric comparisons, Spearman correlations, and logistic regression models. Results Participants with HFpEF showed increased PWV (NCD vs masked HFpEF: 7.0 m/sec [IQR: 5.0-9.5 m/sec] vs 10.0 m/sec [IQR: 8.0-13.4 m/sec], P = .005; NCD vs overt HFpEF: 7.0 m/sec [IQR: 5.0-9.5 m/sec] vs 11.0 m/sec [IQR: 7.5-12.0 m/sec], P = .01). Increased PWV correlated with higher PCWP (P = .006), left atrial and left ventricular long-axis strain (all P < .02), and N-terminal pro-brain natriuretic peptide levels (P < .001). Participants with overt HFpEF had higher levels of myocardial fibrosis, as demonstrated by increased native T1 times (1199 msec [IQR: 1169-1228 msec] vs 1234 msec [IQR: 1208-1255 msec], P = .009). Aortic stiffness was independently associated with HFpEF on multivariable analyses (odds ratio, 1.31; P = .049). Runx2-smTG mice exhibited an "HFpEF" phenotype compared with wild-type controls, with preserved left ventricular fractional shortening but an early and late diastolic mitral annulus velocity less than 1 (mean, 0.67 ± 0.39 [standard error of the mean] vs 1.45 ± 0.47; P = .004), increased myocardial collagen deposition (mean, 11% ± 1 vs 2% ± 1; P < .001), and increased brain natriuretic peptide levels (mean, 171 pg/mL ± 23 vs 101 pg/mL ± 10; P < .001). Conclusion This study provides translational evidence that increased arterial stiffness might be associated with development and progression of HFpEF and may facilitate its early detection. Keywords: MR Functional Imaging, MR Imaging, Animal Studies, Cardiac, Aorta, Heart ClinicalTrials.gov identifier NCT03260621 Supplemental material is available for this article. © RSNA, 2024.


Assuntos
Progressão da Doença , Insuficiência Cardíaca , Volume Sistólico , Rigidez Vascular , Humanos , Rigidez Vascular/fisiologia , Feminino , Masculino , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/diagnóstico por imagem , Idoso , Volume Sistólico/fisiologia , Animais , Camundongos , Estudos Prospectivos , Imagem Cinética por Ressonância Magnética/métodos , Ecocardiografia , Imageamento por Ressonância Magnética , Análise de Onda de Pulso
4.
Eur J Prev Cardiol ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158116

RESUMO

AIMS: Elevated Lipoprotein(a) [Lp(a)] is a causal risk factor for atherosclerotic cardiovascular disease, but the mechanisms of risk are debated. Studies have found inconsistent associations between Lp(a) and measurements of atherosclerosis. We aimed to assess the relationship between Lp(a), low-density lipoprotein cholesterol (LDL-C) and coronary artery plaque severity. METHODS: The study population consisted of participants of the Million Veteran Program who have undergone an invasive angiogram. The primary exposure was genetically predicted Lp(a), estimated by a polygenic score. Genetically predicted LDL-C was also assessed for comparison. The primary outcome was coronary artery plaque severity, categorized as normal, non-obstructive disease, 1-vessel disease, 2-vessel disease, and 3-vessel or left main disease. RESULTS: Among 18,927 adults of genetically inferred European ancestry and 4,039 adults of genetically inferred African ancestry, we observed consistent associations between genetically predicted Lp(a) and obstructive coronary plaque, with effect sizes trending upward for increasingly severe categories of disease. Associations were independent of risk factors, clinically measured LDL-C and genetically predicted LDL-C. However, we did not find strong or consistent evidence for an association between genetically predicted Lp(a) and risk for non-obstructive plaque. CONCLUSIONS: Genetically predicted Lp(a) is positively associated with coronary plaque severity independent of LDL-C, consistent with Lp(a) promoting atherogenesis. However, the effects of Lp(a) may be greater for progression of plaque to obstructive disease than for the initial development of non-obstructive plaque. A limitation of this study is that Lp(a) was estimated using genetic markers and could not be directly assayed, nor could apo(a) isoform size.


This study assessed the association between genetic propensity towards higher lipoprotein(a) [Lp(a)] in the blood and the severity of coronary artery plaque seen on clinical angiograms, independent of other factors, including low-density lipoprotein cholesterol (LDL-C). The study was conducted in a large U.S. population using data from the Million Veteran Program. Genetically predicted high Lp(a) was associated with obstructive coronary plaque, but it was not associated with non-obstructive coronary plaque. This association was independent of LDL-C, and the association was greater for more severe forms of disease.The mechanisms of association between Lp(a) and cardiovascular events are debated. Prior studies have shown that Lp(a) does not associate with early markers of atherosclerosis. Our analyses support the idea that Lp(a) plays less of a role in early plaque initiation but plays a significant role in the progression of plaque towards more severe disease, independent of LDL-C.

5.
Adv Sci (Weinh) ; 11(36): e2401077, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39039808

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), is a major global health concern, particularly affecting those with weakened immune systems, including the elderly. CD4+ T cell response is crucial for immunity against M.tb, but chronic infections and aging can lead to T cell exhaustion and senescence, worsening TB disease. Mitochondrial dysfunction, prevalent in aging and chronic diseases, disrupts cellular metabolism, increases oxidative stress, and impairs T-cell functions. This study investigates the effect of mitochondrial transplantation (mito-transfer) on CD4+ T cell differentiation and function in aged mouse models and human CD4+ T cells from elderly individuals. Mito-transfer in naïve CD4+ T cells is found to promote protective effector and memory T cell generation during M.tb infection in mice. Additionally, it improves elderly human T cell function by increasing mitochondrial mass and altering cytokine production, thereby reducing markers of exhaustion and senescence. These findings suggest mito-transfer as a novel approach to enhance aged CD4+ T cell functionality, potentially benefiting immune responses in the elderly and chronic TB patients. This has broader implications for diseases where mitochondrial dysfunction contributes to T-cell exhaustion and senescence.


Assuntos
Linfócitos T CD4-Positivos , Modelos Animais de Doenças , Mitocôndrias , Mycobacterium tuberculosis , Tuberculose , Linfócitos T CD4-Positivos/imunologia , Humanos , Camundongos , Animais , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Idoso , Senescência Celular/imunologia , Masculino , Feminino , Camundongos Endogâmicos C57BL , Envelhecimento/imunologia
6.
Hepatol Commun ; 8(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38967582

RESUMO

BACKGROUND: Fibrosis-4 (FIB4) is a recommended noninvasive test to assess hepatic fibrosis among patients with metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we used FIB4 trajectory over time (ie, "slope" of FIB4) as a surrogate marker of liver fibrosis progression and examined if FIB4 slope is associated with clinical and genetic factors among individuals with clinically defined MASLD within the Million Veteran Program Cohort. METHODS: In this retrospective cohort study, FIB4 slopes were estimated through linear regression for participants with clinically defined MASLD and FIB4 <2.67 at baseline. FIB4 slope was correlated with demographic parameters and clinical outcomes using logistic regression and Cox proportional hazard models. FIB4 slope as a quantitative phenotype was used in a genome-wide association analysis in ancestry-specific analysis and multiancestry meta-analysis using METAL. RESULTS: FIB4 slopes, generated from 98,361 subjects with MASLD (16,045 African, 74,320 European, and 7996 Hispanic), showed significant associations with sex, ancestry, and cardiometabolic risk factors (p < 0.05). FIB4 slopes also correlated strongly with hepatic outcomes and were independently associated with time to cirrhosis. Five genetic loci showed genome-wide significant associations (p < 5 × 10-8) with FIB4 slope among European ancestry subjects, including 2 known (PNPLA3 and TM6SF2) and 3 novel loci (TERT 5.1 × 10-11; LINC01088, 3.9 × 10-8; and MRC1, 2.9 × 10-9). CONCLUSIONS: Linear trajectories of FIB4 correlated significantly with time to progression to cirrhosis, with liver-related outcomes among individuals with MASLD and with known and novel genetic loci. FIB4 slope may be useful as a surrogate measure of fibrosis progression.


Assuntos
Progressão da Doença , Estudo de Associação Genômica Ampla , Cirrose Hepática , Humanos , Masculino , Feminino , Cirrose Hepática/genética , Cirrose Hepática/complicações , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Idoso , Proteínas de Membrana/genética , Fígado Gorduroso/genética , Biomarcadores , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Aciltransferases , Fosfolipases A2 Independentes de Cálcio
7.
Nat Commun ; 15(1): 5652, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969659

RESUMO

Abdominal aortic aneurysm has a high heritability and often co-occurs with other cardiometabolic disorders, suggesting shared genetic susceptibility. We investigate this commonality leveraging recent GWAS studies of abdominal aortic aneurysm and 32 cardiometabolic traits. We find significant genetic correlations between abdominal aortic aneurysm and 21 of the cardiometabolic traits investigated, including causal relationships with coronary artery disease, hypertension, lipid traits, and blood pressure. For each trait pair, we identify shared causal variants, genes, and pathways, revealing that cholesterol metabolism and inflammation are shared most prominently. Additionally, we show the tissue and cell type specificity in the shared signals, with strong enrichment across traits in the liver, arteries, adipose tissues, macrophages, adipocytes, and fibroblasts. Finally, we leverage drug-gene databases to identify several lipid-lowering drugs and antioxidants with high potential to treat abdominal aortic aneurysm with comorbidities. Our study provides insight into the shared genetic mechanism between abdominal aortic aneurysm and cardiometabolic traits, and identifies potential targets for pharmacological intervention.


Assuntos
Aneurisma da Aorta Abdominal , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Inflamação , Metabolismo dos Lipídeos , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Humanos , Metabolismo dos Lipídeos/genética , Inflamação/genética , Inflamação/metabolismo , Polimorfismo de Nucleotídeo Único , Hipertensão/genética , Doença da Artéria Coronariana/genética
8.
medRxiv ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39006437

RESUMO

Background: Breastfeeding has been associated with maternal and infant health benefits but has been inversely associated with body mass index (BMI) prepartum. Breastfeeding and BMI are both linked to socioeconomic factors. Methods: Data from parous female participants with available breastfeeding information from the Million Veteran Program cohort was included. BMI at enrollment and earliest BMI available were extracted, and polygenic scores (PGS) for BMI were calculated. We modeled breastfeeding for one month or more as a function of BMI at enrollment; earliest BMI where available pre-pregnancy; and PGS for BMI. We conducted Mendelian randomization for breastfeeding initiation using PGS as an instrumental variable. Results: A higher BMI predicted a lower likelihood of breastfeeding for one month or more in all analyses. A +5 kg/m 2 BMI pre-pregnancy was associated with a 24% reduced odds of breastfeeding, and a +5 kg/m 2 genetically predicted BMI was associated with a 17% reduced odds of breastfeeding. Conclusions: BMI predicts a lower likelihood of breastfeeding for one month or longer. Given the high success of breastfeeding initiation regardless of BMI in supportive environments as well as potential health benefits, patients with elevated BMI may benefit from additional postpartum breastfeeding support.

9.
Biomolecules ; 14(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38927129

RESUMO

Abdominal aortic aneurysm (AAA) is a chronic aortic disease that lacks effective pharmacological therapies. This study was performed to determine the influence of treatment with the gasdermin D inhibitor necrosulfonamide on experimental AAAs. AAAs were induced in male apolipoprotein E-deficient mice by subcutaneous angiotensin II infusion (1000 ng/kg body weight/min), with daily administration of necrosulfonamide (5 mg/kg body weight) or vehicle starting 3 days prior to angiotensin II infusion for 30 days. Necrosulfonamide treatment remarkably suppressed AAA enlargement, as indicated by reduced suprarenal maximal external diameter and surface area, and lowered the incidence and reduced the severity of experimental AAAs. Histologically, necrosulfonamide treatment attenuated medial elastin breaks, smooth muscle cell depletion, and aortic wall collagen deposition. Macrophages, CD4+ T cells, CD8+ T cells, and neovessels were reduced in the aneurysmal aortas of necrosulfonamide- as compared to vehicle-treated angiotensin II-infused mice. Atherosclerosis and intimal macrophages were also substantially reduced in suprarenal aortas from angiotensin II-infused mice following necrosulfonamide treatment. Additionally, the levels of serum interleukin-1ß and interleukin-18 were significantly lower in necrosulfonamide- than in vehicle-treated mice without affecting body weight gain, lipid levels, or blood pressure. Our findings indicate that necrosulfonamide reduced experimental AAAs by preserving aortic structural integrity as well as reducing mural leukocyte accumulation, neovessel formation, and systemic levels of interleukin-1ß and interleukin-18. Thus, pharmacologically inhibiting gasdermin D activity may lead to the establishment of nonsurgical therapies for clinical AAA disease.


Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Apolipoproteínas E , Sulfonamidas , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/prevenção & controle , Camundongos , Masculino , Sulfonamidas/farmacologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Proteínas de Ligação a Fosfato/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Indóis/farmacologia , Camundongos Knockout para ApoE , Gasderminas
10.
PLoS One ; 19(6): e0303792, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848385

RESUMO

The mission of NIH-sponsored institutional training programs such as the T32 is to provide strong research and career training for early career scientists. One of the main avenues to pursuing health-related research is becoming research faculty at an academic institution. It is therefore important to know whether these programs are succeeding in this mission, or, if barriers exist that prevent trainees from pursuing these careers. Our institution currently trains ~ 2400 post-doctoral scholars per year, approximately 5% of whom are enrolled in one of our 33 T32 programs. In this study, we 1) compare the proximal professional career trajectories of T32 trainees with non-T32 trainees at our institution, 2) compare proximal career trajectories of trainees in a subset of cardiovascular T32 programs based on their previous training backgrounds, and 3) survey past and current T32 trainees in a subset of cardiovascular T32 programs about the barriers and enablers they experienced to pursuing research-oriented careers. We find that former T32 trainees are significantly more likely to attain appointments as primarily research faculty members, compared to other trainees. Trainees report a perceived lack of stability, the paucity of open positions, and the 'publish or perish' mentality of academia as the top barriers to pursuing careers in academia. However, they were still more likely to choose research over clinical careers after participating in a dedicated T32 program. Our results support the conclusion that structured training programs strengthen the pipeline of young scientists pursuing careers in academic research, including those from underrepresented backgrounds. However, T32 postdoctoral researchers are held back from pursuing academic careers by a perceived lack of stability and high competition for faculty positions.


Assuntos
Docentes , Humanos , Estados Unidos , Escolha da Profissão , Masculino , Feminino , Pesquisa Biomédica/educação , National Institutes of Health (U.S.) , Pesquisadores/educação , Educação de Pós-Graduação/estatística & dados numéricos
11.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798507

RESUMO

Polygenic risk scores (PRSs) are commonly used for predicting an individual's genetic risk of complex diseases. Yet, their implication for disease pathogenesis remains largely limited. Here, we introduce scPRS, a geometric deep learning model that constructs single-cell-resolved PRS leveraging reference single-cell chromatin accessibility profiling data to enhance biological discovery as well as disease prediction. Real-world applications across multiple complex diseases, including type 2 diabetes (T2D), hypertrophic cardiomyopathy (HCM), and Alzheimer's disease (AD), showcase the superior prediction power of scPRS compared to traditional PRS methods. Importantly, scPRS not only predicts disease risk but also uncovers disease-relevant cells, such as hormone-high alpha and beta cells for T2D, cardiomyocytes and pericytes for HCM, and astrocytes, microglia and oligodendrocyte progenitor cells for AD. Facilitated by a layered multi-omic analysis, scPRS further identifies cell-type-specific genetic underpinnings, linking disease-associated genetic variants to gene regulation within corresponding cell types. We substantiate the disease relevance of scPRS-prioritized HCM genes and demonstrate that the suppression of these genes in HCM cardiomyocytes is rescued by Mavacamten treatment. Additionally, we establish a novel microglia-specific regulatory relationship between the AD risk variant rs7922621 and its target genes ANXA11 and TSPAN14. We further illustrate the detrimental effects of suppressing these two genes on microglia phagocytosis. Our work provides a multi-tasking, interpretable framework for precise disease prediction and systematic investigation of the genetic, cellular, and molecular basis of complex diseases, laying the methodological foundation for single-cell genetics.

12.
Nat Genet ; 56(5): 827-837, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632349

RESUMO

We report a multi-ancestry genome-wide association study on liver cirrhosis and its associated endophenotypes, alanine aminotransferase (ALT) and γ-glutamyl transferase. Using data from 12 cohorts, including 18,265 cases with cirrhosis, 1,782,047 controls, up to 1 million individuals with liver function tests and a validation cohort of 21,689 cases and 617,729 controls, we identify and validate 14 risk associations for cirrhosis. Many variants are located near genes involved in hepatic lipid metabolism. One of these, PNPLA3 p.Ile148Met, interacts with alcohol intake, obesity and diabetes on the risk of cirrhosis and hepatocellular carcinoma (HCC). We develop a polygenic risk score that associates with the progression from cirrhosis to HCC. By focusing on prioritized genes from common variant analyses, we find that rare coding variants in GPAM associate with lower ALT, supporting GPAM as a potential target for therapeutic inhibition. In conclusion, this study provides insights into the genetic underpinnings of cirrhosis.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Cirrose Hepática , Humanos , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/genética , Alanina Transaminase/sangue , Polimorfismo de Nucleotídeo Único , Masculino , Lipase/genética , Feminino , gama-Glutamiltransferase/genética , Proteínas de Membrana/genética , Estudos de Coortes , Estudos de Casos e Controles , Herança Multifatorial/genética , Fatores de Risco , Variação Genética
13.
medRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633814

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease caused by the selective and progressive death of motor neurons (MNs). Understanding the genetic and molecular factors influencing ALS survival is crucial for disease management and therapeutics. In this study, we introduce a deep learning-powered genetic analysis framework to link rare noncoding genetic variants to ALS survival. Using data from human induced pluripotent stem cell (iPSC)-derived MNs, this method prioritizes functional noncoding variants using deep learning, links cis-regulatory elements (CREs) to target genes using epigenomics data, and integrates these data through gene-level burden tests to identify survival-modifying variants, CREs, and genes. We apply this approach to analyze 6,715 ALS genomes, and pinpoint four novel rare noncoding variants associated with survival, including chr7:76,009,472:C>T linked to CCDC146. CRISPR-Cas9 editing of this variant increases CCDC146 expression in iPSC-derived MNs and exacerbates ALS-specific phenotypes, including TDP-43 mislocalization. Suppressing CCDC146 with an antisense oligonucleotide (ASO), showing no toxicity, completely rescues ALS-associated survival defects in neurons derived from sporadic ALS patients and from carriers of the ALS-associated G4C2-repeat expansion within C9ORF72. ASO targeting of CCDC146 may be a broadly effective therapeutic approach for ALS. Our framework provides a generic and powerful approach for studying noncoding genetics of complex human diseases.

14.
Arterioscler Thromb Vasc Biol ; 44(5): 1114-1123, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38545784

RESUMO

BACKGROUND: Hundreds of biomarkers for peripheral artery disease (PAD) have been reported in the literature; however, the observational nature of these studies limits causal inference due to the potential of reverse causality and residual confounding. We sought to evaluate the potential causal impact of putative PAD biomarkers identified in human observational studies through genetic causal inference methods. METHODS: Putative circulating PAD biomarkers were identified from human observational studies through a comprehensive literature search based on terms related to PAD using PubMed, Cochrane, and Embase. Genetic instruments were generated from publicly available genome-wide association studies of circulating biomarkers. Two-sample Mendelian randomization was used to test the association of genetically determined biomarker levels with PAD using summary statistics from a genome-wide association study of 31 307 individuals with and 211 753 individuals without PAD in the Veterans Affairs Million Veteran Program and replicated in data from FinnGen comprised of 11 924 individuals with and 288 638 individuals without PAD. RESULTS: We identified 204 unique circulating biomarkers for PAD from the observational literature, of which 173 were genetically instrumented using genome-wide association study results. After accounting for multiple testing (false discovery rate, <0.05), 10 of 173 (5.8%) biomarkers had significant associations with PAD. These 10 biomarkers represented categories including plasma lipoprotein regulation, lipid homeostasis, and protein-lipid complex remodeling. Observational literature highlighted different pathways including inflammatory response, negative regulation of multicellular organismal processes, and regulation of response to external stimuli. CONCLUSIONS: Integrating human observational studies and genetic causal inference highlights several key pathways in PAD pathophysiology. This work demonstrates that a substantial portion of biomarkers identified in observational studies are not well supported by human genetic evidence and emphasizes the importance of triangulating evidence to understand PAD pathophysiology. Although the identified biomarkers offer insights into atherosclerotic development in the lower limb, their specificity to PAD compared with more widespread atherosclerosis requires further study.


Assuntos
Biomarcadores , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doença Arterial Periférica , Humanos , Doença Arterial Periférica/genética , Doença Arterial Periférica/sangue , Doença Arterial Periférica/diagnóstico , Biomarcadores/sangue , Estudos Observacionais como Assunto , Predisposição Genética para Doença , Fatores de Risco , Polimorfismo de Nucleotídeo Único , Valor Preditivo dos Testes
15.
bioRxiv ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328206

RESUMO

Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis (M.tb), remains a significant health concern worldwide, especially in populations with weakened or compromised immune systems, such as the elderly. Proper adaptive immune function, particularly a CD4+ T cell response, is central to host immunity against M.tb. Chronic infections, such as M.tb, as well as aging promote T cell exhaustion and senescence, which can impair immune control and promote progression to TB disease. Mitochondrial dysfunction contributes to T cell dysfunction, both in aging and chronic infections and diseases. Mitochondrial perturbations can disrupt cellular metabolism, enhance oxidative stress, and impair T-cell signaling and effector functions. This study examined the impact of mitochondrial transplantation (mito-transfer) on CD4+ T cell differentiation and function using aged mouse models and human CD4+ T cells from elderly individuals. Our study revealed that mito-transfer in naïve CD4+ T cells promoted the generation of protective effector and memory CD4+ T cells during M.tb infection in mice. Further, mito-transfer enhanced the function of elderly human T cells by increasing their mitochondrial mass and modulating cytokine production, which in turn reduced exhaustion and senescence cell markers. Our results suggest that mito-transfer could be a novel strategy to reestablish aged CD4+ T cell function, potentially improving immune responses in the elderly and chronic TB patients, with a broader implication for other diseases where mitochondrial dysfunction is linked to T cell exhaustion and senescence.

16.
Circ Genom Precis Med ; 17(3): e004272, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38380516

RESUMO

BACKGROUND: Predictive performance of polygenic risk scores (PRS) varies across populations. To facilitate equitable clinical use, we developed PRS for coronary heart disease (CHD; PRSCHD) for 5 genetic ancestry groups. METHODS: We derived ancestry-specific and multi-ancestry PRSCHD based on pruning and thresholding (PRSPT) and ancestry-based continuous shrinkage priors (PRSCSx) applied to summary statistics from the largest multi-ancestry genome-wide association study meta-analysis for CHD to date, including 1.1 million participants from 5 major genetic ancestry groups. Following training and optimization in the Million Veteran Program, we evaluated the best-performing PRSCHD in 176,988 individuals across 9 diverse cohorts. RESULTS: Multi-ancestry PRSPT and PRSCSx outperformed ancestry-specific PRSPT and PRSCSx across a range of tuning values. Two best-performing multi-ancestry PRSCHD (ie, PRSPTmult and PRSCSxmult) and 1 ancestry-specific (PRSCSxEUR) were taken forward for validation. PRSPTmult demonstrated the strongest association with CHD in individuals of South Asian ancestry and European ancestry (odds ratio per 1 SD [95% CI, 2.75 [2.41-3.14], 1.65 [1.59-1.72]), followed by East Asian ancestry (1.56 [1.50-1.61]), Hispanic/Latino ancestry (1.38 [1.24-1.54]), and African ancestry (1.16 [1.11-1.21]). PRSCSxmult showed the strongest associations in South Asian ancestry (2.67 [2.38-3.00]) and European ancestry (1.65 [1.59-1.71]), lower in East Asian ancestry (1.59 [1.54-1.64]), Hispanic/Latino ancestry (1.51 [1.35-1.69]), and the lowest in African ancestry (1.20 [1.15-1.26]). CONCLUSIONS: The use of summary statistics from a large multi-ancestry genome-wide meta-analysis improved the performance of PRSCHD in most ancestry groups compared with single-ancestry methods. Despite the use of one of the largest and most diverse sets of training and validation cohorts to date, improvement of predictive performance was limited in African ancestry. This highlights the need for larger genome-wide association study datasets of underrepresented populations to enhance the performance of PRSCHD.


Assuntos
Doença das Coronárias , Estudo de Associação Genômica Ampla , Herança Multifatorial , Humanos , Doença das Coronárias/genética , Masculino , Feminino , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Pessoa de Meia-Idade , Estratificação de Risco Genético
17.
Cardiovasc Res ; 120(4): 417-432, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37976180

RESUMO

AIMS: Abdominal aortic aneurysm (AAA) is a highly lethal disease with progressive dilatation of the abdominal aorta accompanied by degradation and remodelling of the vessel wall due to chronic inflammation. Platelets play an important role in cardiovascular diseases, but their role in AAA is poorly understood. METHODS AND RESULTS: The present study revealed that platelets play a crucial role in promoting AAA through modulation of inflammation and degradation of the extracellular matrix (ECM). They are responsible for the up-regulation of SPP1 (osteopontin, OPN) gene expression in macrophages and aortic tissue, which triggers inflammation and remodelling and also platelet adhesion and migration into the abdominal aortic wall and the intraluminal thrombus (ILT). Further, enhanced platelet activation and pro-coagulant activity result in elevated gene expression of various cytokines, Mmp9 and Col1a1 in macrophages and Il-6 and Mmp9 in fibroblasts. Enhanced platelet activation and pro-coagulant activity were also detected in AAA patients. Further, we detected platelets and OPN in the vessel wall and in the ILT of patients who underwent open repair of AAA. Platelet depletion in experimental murine AAA reduced inflammation and ECM remodelling, with reduced elastin fragmentation and aortic diameter expansion. Of note, OPN co-localized with platelets, suggesting a potential role of OPN for the recruitment of platelets into the ILT and the aortic wall. CONCLUSION: In conclusion, our data strongly support the potential relevance of anti-platelet therapy to reduce AAA progression and rupture in AAA patients.


Assuntos
Aneurisma da Aorta Abdominal , Metaloproteinase 9 da Matriz , Humanos , Animais , Camundongos , Metaloproteinase 9 da Matriz/metabolismo , Osteopontina/genética , Osteopontina/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Aorta Abdominal/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Fibroblastos/metabolismo
18.
Adv Sci (Weinh) ; 11(5): e2303664, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37990641

RESUMO

Mitochondrial dysfunction alters cellular metabolism, increases tissue oxidative stress, and may be principal to the dysregulated signaling and function of CD4+ T lymphocytes in the elderly. In this proof of principle study, it is investigated whether the transfer of functional mitochondria into CD4+ T cells that are isolated from old mice (aged CD4+ T cells), can abrogate aging-associated mitochondrial dysfunction, and improve the aged CD4+ T cell functionality. The results show that the delivery of exogenous mitochondria to aged non-activated CD4+ T cells led to significant mitochondrial proteome alterations highlighted by improved aerobic metabolism and decreased cellular mitoROS. Additionally, mito-transferred aged CD4+ T cells showed improvements in activation-induced TCR-signaling kinetics displaying markers of activation (CD25), increased IL-2 production, enhanced proliferation ex vivo. Importantly, immune deficient mouse models (RAG-KO) showed that adoptive transfer of mito-transferred naive aged CD4+ T cells, protected recipient mice from influenza A and Mycobacterium tuberculosis infections. These findings support mitochondria as targets of therapeutic intervention in aging.


Assuntos
Envelhecimento , Doenças Mitocondriais , Humanos , Idoso , Camundongos , Animais , Linfócitos T CD4-Positivos , Linfócitos T Reguladores , Mitocôndrias
19.
JHEP Rep ; 6(1): 100902, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38074507

RESUMO

Background & Aims: Non-alcoholic fatty liver disease (NAFLD) is characterised by the accumulation of lipid droplets (LDs) within hepatocytes. Perilipin 2 (PLIN2) is the most abundant protein in hepatic LDs and its expression correlates with intracellular lipid accumulation. A recently discovered PLIN2 coding variant, Ser251Pro (rs35568725), was found to promote the accumulation of small LDs in embryonic kidney cells. In this study, we investigate the role of PLIN2-Ser251Pro (PLIN2-Pro251) on hepatic LD metabolism in vivo and research the metabolic phenotypes associated with this variant in humans. Methods: For our animal model, we used Plin2 knockout mice in which we expressed either human PLIN2-Pro251 (Pro251 mice) or wild-type human PLIN2-Ser251 (Ser251 mice) in a hepatocyte-specific manner. We fed both cohorts a lipogenic high-fat, high-cholesterol, high-fructose diet for 12 weeks. Results: Pro251 mice were associated with reduced liver triglycerides (TGs) and had lower mRNA expression of fatty acid synthase and diacylglycerol O-acyltransferase-2 compared with Ser251 mice. Moreover, Pro251 mice had a reduction of polyunsaturated fatty acids-TGs and reduced expression of epoxygenase genes. For our human study, we analysed the Penn Medicine BioBank, the Million Veteran Program, and UK Biobank. Across these databases, the minor allele frequency of PLIN2-Pro251 was approximately 5%. There was no association with the clinical diagnosis of NAFLD, however, there was a trend toward reduced liver fat in PLIN2-Pro251 carriers by MRI-spectroscopy in UK Biobank subjects. Conclusions: In mice lacking endogenous Plin2, expression of human PLIN2-Pro251 attenuated high-fat, high-fructose, high-cholesterol, diet-induced hepatic steatosis compared with human wild-type PLIN2-Ser251. Moreover, Pro251 mice had lower polyunsaturated fatty acids-TGs and epoxygenase genes expression, suggesting less liver oxidative stress. In humans, PLIN2-Pro251 is not associated with NAFLD. Impact and Implications: Lipid droplet accumulation in hepatocytes is the distinctive characteristic of non-alcoholic fatty liver disease. Perilipin 2 (PLIN2) is the most abundant protein in hepatic lipid droplets; however, little is known on the role of a specific polymorphism PLIN2-Pro251 on hepatic lipid droplet metabolism. PLIN2-Pro251 attenuates liver triglycerides accumulation after a high-fat-high-glucose-diet. PLIN2-Pro251 may be a novel lipid droplet protein target for the treatment of liver steatosis.

20.
medRxiv ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38076879

RESUMO

BACKGROUND & AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) affects over 25% of the population and currently has no effective treatments. Plasma proteins with causal evidence may represent promising drug targets. We aimed to identify plasma proteins in the causal pathway of MASLD and explore their interaction with obesity. METHODS: We analysed 2,941 plasma proteins in 43,978 European participants from UK Biobank. We performed genome-wide association study (GWAS) for all MASLD-associated proteins and created the largest MASLD GWAS (109,885 cases/1,014,923 controls). We performed Mendelian Randomization (MR) and integrated proteins and their encoding genes in MASLD ranges to identify candidate causal proteins. We then validated them through independent replication, exome sequencing, liver imaging, bulk and single-cell gene expression, liver biopsies, pathway, and phenome-wide data. We explored the role of obesity by MR and multivariable MR across proteins, body mass index, and MASLD. RESULTS: We found 929 proteins associated with MASLD, reported five novel genetic loci associated with MASLD, and identified 17 candidate MASLD protein targets. We identified four novel targets for MASLD (CD33, GRHPR, HMOX2, and SCG3), provided protein evidence supporting roles of AHCY, FCGR2B, ORM1, and RBKS in MASLD, and validated nine previously known targets. We found that CD33, FCGR2B, ORM1, RBKS, and SCG3 mediated the association of obesity and MASLD, and HMOX2, ORM1, and RBKS had effect on MASLD independent of obesity. CONCLUSIONS: This study identified new protein targets in the causal pathway of MASLD, providing new insights into the multi-omics architecture and pathophysiology of MASLD. These findings advise further therapeutic interventions for MASLD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA