Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3538, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725981

RESUMO

In the era of single-cell sequencing, there is a growing need to extract insights from data with clustering methods. Here, we introduce Forest Fire Clustering, an efficient and interpretable method for cell-type discovery from single-cell data. Forest Fire Clustering makes minimal prior assumptions and, different from current approaches, calculates a non-parametric posterior probability that each cell is assigned a cell-type label. These posterior distributions allow for the evaluation of a label confidence for each cell and enable the computation of "label entropies", highlighting transitions along developmental trajectories. Furthermore, we show that Forest Fire Clustering can make robust, inductive inferences in an online-learning context and can readily scale to millions of cells. Finally, we demonstrate that our method outperforms state-of-the-art clustering approaches on diverse benchmarks of simulated and experimental data. Overall, Forest Fire Clustering is a useful tool for rare cell type discovery in large-scale single-cell analysis.


Assuntos
Incêndios Florestais , Análise por Conglomerados , Método de Monte Carlo , Probabilidade , Análise de Célula Única
2.
Phys Rev E ; 103(2-1): 022902, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33736049

RESUMO

We investigate the mechanical response of jammed packings of repulsive, frictionless spherical particles undergoing isotropic compression. Prior simulations of the soft-particle model, where the repulsive interactions scale as a power law in the interparticle overlap with exponent α, have found that the ensemble-averaged shear modulus 〈G(P)〉 increases with pressure P as ∼P^{(α-3/2)/(α-1)} at large pressures. 〈G〉 has two key contributions: (1) continuous variations as a function of pressure along geometrical families, for which the interparticle contact network does not change, and (2) discontinuous jumps during compression that arise from changes in the contact network. Using numerical simulations, we show that the form of the shear modulus G^{f} for jammed packings within near-isostatic geometrical families is largely determined by the affine response G^{f}∼G_{a}^{f}, where G_{a}^{f}/G_{a0}=(P/P_{0})^{(α-2)/(α-1)}-P/P_{0}, P_{0}∼N^{-2(α-1)} is the characteristic pressure at which G_{a}^{f}=0, G_{a0} is a constant that sets the scale of the shear modulus, and N is the number of particles. For near-isostatic geometrical families that persist to large pressures, deviations from this form are caused by significant nonaffine particle motion. We further show that the ensemble-averaged shear modulus 〈G(P)〉 is not simply a sum of two power laws, but 〈G(P)〉∼(P/P_{c})^{a}, where a≈(α-2)/(α-1) in the P→0 limit and 〈G(P)〉∼(P/P_{c})^{b}, where b≳(α-3/2)/(α-1), above a characteristic pressure that scales as P_{c}∼N^{-2(α-1)}.

3.
Soft Matter ; 16(41): 9443-9455, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32940321

RESUMO

We investigate the mechanical response of packings of purely repulsive, frictionless disks to quasistatic deformations. The deformations include simple shear strain at constant packing fraction and at constant pressure, "polydispersity" strain (in which we change the particle size distribution) at constant packing fraction and at constant pressure, and isotropic compression. For each deformation, we show that there are two classes of changes in the interparticle contact networks: jump changes and point changes. Jump changes occur when a contact network becomes mechanically unstable, particles "rearrange", and the potential energy (when the strain is applied at constant packing fraction) or enthalpy (when the strain is applied at constant pressure) and all derivatives are discontinuous. During point changes, a single contact is either added to or removed from the contact network. For repulsive linear spring interactions, second- and higher-order derivatives of the potential energy/enthalpy are discontinuous at a point change, while for Hertzian interactions, third- and higher-order derivatives of the potential energy/enthalpy are discontinuous. We illustrate the importance of point changes by studying the transition from a hexagonal crystal to a disordered crystal induced by applying polydispersity strain. During this transition, the system only undergoes point changes, with no jump changes. We emphasize that one must understand point changes, as well as jump changes, to predict the mechanical properties of jammed packings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA